Применение олова. Сфера и области применения олова и его сплавов

Олово – это легкий металл с атомным номером 50, который находится в 14-й группе периодической системы элементов. Этот элемент был известен еще в древности и считался одним из самых редких и дорогих металлов, поэтому изделия из олова могли позволить себе самые богатые жители Римской Империи и Древней Греции. Из олова изготавливали специальную бронзу, которой пользовались еще в третьем тысячелетии до нашей эры. Тогда бронза была самым прочным и популярным сплавом, а олово служило одной из примесей и использовалось более двух тысяч лет.

На латыни этот металл называли словом «stan­num», что означает стойкость и прочность, однако таким названием ранее обозначался сплав свинца и серебра. Только в IV веке этим словом начали называть само олово. Само же название «олово» имеет множество версий происхождения. В Древнем Риме сосуды для вина делались из свинца. Можно предположить, что оловом называли материал , из которого изготавливали сосуды для хранения напитка оловина, употребляемого древними славянами.

В природе этот металл встречается редко, по распространенности в земной коре олово занимает всего лишь 47-е место и добывается из касситерита, так называемого оловянного камня , который содержит около 80 процентов этого металла.

Касситерит

Применение в промышленности

Так как олово является нетоксичным и весьма прочным металлом, он применяется в сплавах с другими металлами. По большей части его используют для изготовления белой жести, которая применяется в производстве банок для консервов, припоев в электронике, а также для изготовления бронзы.

Физические свойства олова

Этот элемент представляет собой металл белого цвета с серебристым отблеском.


Серое и белое олово

Если нагреть олово, можно услышать потрескивание. Этот звук обусловлен трением кристалликов друг о друга. Также характерный хруст появится, если кусок олова просто согнуть.

Олово весьма пластично и ковко. В классических условиях этот элемент существует в виде «белого олова», которое может модифицироваться в зависимости от температуры. Например, на морозе белое олово превратится в серое и будет иметь структуру, схожую со структурой алмаза. Кстати, серое олово очень хрупкое и буквально на глазах рассыпается в порошок. В связи с этим в истории есть терминология «оловянная чума».

Раньше люди не знали о таком свойстве олова, поэтому из него изготавливались пуговицы и кружки для солдат, а также прочие полезные вещи, которые после недолгого времени на морозе превращались в порошок. Некоторые историки считают, что именно из-за этого свойства олова снизилась боеспособность армии Наполеона.

Получение олова

Основным способом получения олова является восстановление металла из руды, содержащей оксид олова(IV) с помощью угля, алюминия или .

SnO₂ + C = Sn + CO₂

Особо чистое олово получают электрохимическим рафинированием или методом зонной плавки.

Химические свойства олова

При комнатной температуре олово довольно устойчиво к воздействию воздуха или . Это объясняется тем, что на поверхности металла возникает тонкая оксидная пленка.

На воздухе олово начинает окисляться только при температуре свыше 150 °С:

Sn + O₂ → SnO₂


Волокна SnO₂ в оптическом микроскопе

Если олово нагреть, этот элемент будет реагировать с большинством неметаллов, образуя соединения со степенью окисления +4 (она более характерна для этого элемента):

Sn + 2Cl₂ → SnCl₄

Взаимодействие олова и концентрированной соляной кислоты протекает довольно медленно:

Sn + 4HCl → H₂ + H₂

С концентрированной серной кислотой олово реагирует очень медленно, тогда как с разбавленной в реакцию не вступает вообще.

Очень интересна реакция олова с азотной кислотой, которая зависит от концентрации раствора. Реакция протекает с образованием оловянной кислоты, H₂S­nO₃, которая представляет собой белый аморфный порошок:

3Sn + 4H­NO₃ + nH₂O = 3H₂S­nO₃·nH₂O + 4NO

Если же смешать с разбавленной азотной кислотой, этот элемент будет проявлять металлические свойства с образованием нитрата олова:

4Sn + 10H­NO₃ = 4Sn(NO₃)₂ + NH₄NO₃ + 3H₂O

Нагретое олово нагреть может реагировать со щелочами с выделением водорода:

Sn + 2KOH + 4H₂O = K₂ + 2H₂

вы найдете безопасные и очень красивые эксперименты с оловом.

Степени окисления олова

В простом состоянии степень окисления олова равняется нулю. Также Sn может иметь степень окисления +2: оксид олова(II) SnO, SnCl₂, гидроксид олова(II) Sn(OH)₂. Степень окисления +4 наиболее характерна для оксида олова(IV) SnO₂, галогенидах(IV), например хлорид SnCl₄, сульфид олова(IV) SnS₂, нитрид олова(IV) Sn₃N₄.

Химический элемент олово является одним из семи древних металлов, которые известны человечеству. Этот металл входит в состав бронзы, имеющей огромное значение. В настоящее время химический элемент олово утратил востребованность, но его свойства заслуживают детального рассмотрения и изучения.

Что собой представляет элемент

Располагается он в пятом периоде, в четвертой группе (главной подгруппе). Подобное расположение свидетельствует о том, что химический элемент олово - амфотерное соединение, способное проявлять и основные, и кислотные свойства. Относительная атомная масса составляет 50, поэтому его считают легким элементом.

Особенности

Химический элемент олово является пластичным, ковким, легким веществом серебристого белого цвета. По мере эксплуатации он теряет свой блеск, что считают минусом его характеристик. Олово - металл рассеянный, поэтому существуют сложности с его добычей. Элемент имеет высокую температуру кипения (2600 градусов), низкую температуру плавления (231,9 С), большую электрическую проводимость, отличную ковкость. У него высокое сопротивление разрыву.

Олово - элемент, который не обладает токсичными свойствами, не оказывает негативного воздействия на организм человека, поэтому востребован в пищевом производстве.

Какое еще имеет свойство олово? При выборе данного элемента для изготовления посуды и водного трубопровода не придется опасаться за свою безопасность.

Нахождение в организме

Чем еще характеризуется олово (химический элемент)? Как читается его формула? Данные вопросы рассматриваются в курсе школьной программы. В нашем организме данный элемент располагается в костях, способствуя процессу регенерации костной ткани. Его относят к макроэлементам, поэтому для полноценной жизнедеятельности, человеку достаточно от двух до десяти мг олова в сутки.

В организм этот элемент попадает в большем количестве с пищей, но кишечник усваивает не больше пяти процентов поступлений, поэтому вероятность отравления минимальна.

При недостатке данного металла происходит замедление роста, происходит потеря слуха, меняется состав костной ткани, наблюдается облысение. Отравление вызывается поглощением пыли или паров данного металла, а также его соединений.

Основные свойства

Плотность олова имеет среднюю величину. Металл отличается высокой коррозионной стойкостью, поэтому его применяют в народном хозяйстве. Например, олово востребовано при изготовлении консервных банок.

Чем еще характеризуется олово? Применение этого металла основывается также на его способности объединять различные металлы, создавая устойчивую к агрессивным средам, внешнюю среду. Например, сам металл необходим для лужения предметов быта и посуды, а его припои нужны для радиотехники и электричества.

Характеристики

По своим внешним характеристикам этот металл аналогичен алюминию. В реальности сходство между ними незначительное, ограничивается только легкостью и металлическим блеском, устойчивостью к химической коррозии. Алюминий проявляется амфотерные свойства, поэтому легко вступает в реакцию со щелочами и кислотами.

Например, если на алюминий действует уксусная кислота, наблюдается химическое взаимодействие. Олово же способно взаимодействовать только с сильными концентрированными кислотами.

Преимущества и недостатки олова

Данный металл практически не используется в строительстве, поскольку не отличается высокой механической прочностью. В основном в настоящее время используют не чистый металл, а его сплавы.

Выделим основные преимущества данного металла. Особое значение имеет ковкость, ее используют в процессе изготовления предметов быта. Например, эстетично выглядят подставки, светильники, выполненные из данного металла.

Оловянное покрытие позволяет существенно снижать трение, благодаря чему изделие защищено от преждевременного износа.

Среди основных недостатков данного метала можно упомянуть его незначительную прочность. Олово непригодно для изготовления частей и деталей, предполагающих существенные нагрузки.

Добыча металла

Плавление олова осуществляется при невысокой температуре, но из-за трудности его добычи металл считается дорогостоящим веществом. Из-за низкой температуры плавления при нанесении олова на поверхность металла можно получить существенную экономию электрической энергии.

Структура

Металл имеет однородную структуру, но, в зависимости от температуры, возможны разные его фазы, отличающиеся по характеристикам. Среди самых распространенных модификаций данного металла отметим β-вариант, существующий при температуре 20 градусов. Теплопроводность, его температура кипения, являются основными характеристиками, приводимыми для олова. При снижении температуры от 13,2 С образуется α-модификация, именуемая серым оловом. Эта форма не обладает пластичностью и ковкостью, имеет меньшую плотность, поскольку обладает иной кристаллической решеткой.

При переходе из одной формы в другую наблюдается изменение объема, так как существует разница в плотности, в результате чего происходит разрушение оловянного изделия. Такое явление называют «оловянной чумой». Такая особенность приводит к тому, что существенно уменьшается область использования металла.

В природных условиях олово можно найти в составе горных пород в виде рассеянного элемента, кроме того известны его минеральные формы. Например, в касситерите содержится его оксид, а в оловянном колчедане - его сульфид.

Производство

Перспективными для промышленной переработки считают оловянные руды, в которых содержание металла не меньше 0,1 процента. Но в настоящее время эксплуатируют и те месторождения, в которых содержание металла составляет всего 0,01 процента. Для добычи минерала применяют различные способы, учитывая специфику месторождения, а также его разновидность.

В основном оловянные руды представлены в виде песков. Добыча сводится к его постоянной промывке, а также к концентрированию рудного минерала. Коренное месторождение разрабатывать гораздо сложнее, поскольку необходимы дополнительные сооружения, строительство и эксплуатация шахт.

Концентрат минерала перевозят на завод, специализирующийся на плавке цветного металла. Далее осуществляется многократное обогащение руды, измельчение, затем промывание. Рудный шлих восстанавливают, воспользовавшись специальными печами. Для полного восстановления олова этот процесс проводят несколько раз. На завершающем этапе осуществляют процесс очистки от примесей чернового олова, используя термический либо электролитический способ.

Использование

В качестве основной характеристики, позволяющей применять олово, выделяют его высокую коррозионную устойчивость. Данный металл, а также его сплавы являются одними из самых устойчивых соединений по отношению к агрессивным химическим веществам. Больше половины всего олова, производимого в мире, применяется для изготовления белой жести. Данную технологию, связанную с нанесением на сталь тонкого слоя олова, стали применять для защиты от химической коррозии консервных банок.

Способность олова к раскатыванию используется для производства из него тонкостенных труб. Из-за неустойчивости данного металла к низким значениям температур его бытовое использование достаточно ограничено.

У сплавов олова значение теплопроводности существенно ниже, чем у стали, поэтому их можно применять для производства умывальников и ванн, а также для изготовления различной сантехнической фурнитуры.

Олово подходит для производства незначительных декоративных и бытовых предметов, изготовления посуды, создания оригинальных ювелирных украшений. Этот неяркий и ковкий металл при объединении с медью давно стал одним из самых излюбленных материалов скульпторов. Бронза объединяет в себе высокую прочность, стойкость к химической и естественной коррозии. Этот сплав востребован в качестве декоративного и строительного материала.

Олово является тонально-резонансным металлом. Например, при его соединении со свинцом получают сплав, применяемый для изготовления современных музыкальных инструментов. С древних времен известны бронзовые колокола. Для создания органных труб применяют сплав олова со свинцом.

Заключение

Увеличение внимания современного производства к вопросам, связанным с охраной окружающей среды, а также к проблемам, связанным с сохранением здоровья населения, повлиял на состав материалов, применяемых в изготовлении электроники. Например, возрос интерес к технологии бессвинцового процесса пайки. Свинец является материалом, приносящим существенный вред здоровью человека, поэтому его перестали применять в электротехнике. Ужесточились требования к пайке, вместо опасного свинца стали использовать сплавы олова.

Чистое олово практически не используется в промышленности, поскольку возникают проблемы с развитием «оловянной чумы». Среди основных сфер применения данного редкого рассеянного элемента выделим изготовление сверхпроводящих проводов.

Покрытие чистым оловом контактных поверхностей позволяет увеличивать процесс пайки, защищать металл от процесса коррозии.

В результате перехода на бессвинцовую технологию многих производителей стали ими начало использоваться натуральное олово для покрытия контактных поверхностей и выводов. Подобный вариант позволяет по приемлемой стоимости получать качественное защитное покрытие. Благодаря отсутствию примесей, новая технология не только считается экологически безопасной, но и дает возможность получать отличный результат по приемлемой стоимости. Именно олово производители считают перспективным и современным металлом в электротехнике, радиоэлектронике.

Олово (лат. Stannum), Sn, химический элемент IV группы периодической системы Менделеева; атомный номер 50, атомная масса 118,69; белый блестящий металл, тяжелый, мягкий и пластичный. Элемент состоит из 10 изотопов с массовыми числами 112, 114-120, 122, 124; последний слабо радиоактивен; изотоп 120 Sn наиболее распространен (около 33%).

Историческая справка. Сплавы Олова с медью - бронзы были известны уже в 4-м тысячелетии до н. э., а чистый металл во 2-м тысячелетии до н. э. В древнем мире из Олова делали украшения, посуду, утварь. Происхождение названий "stannum" и "олово" точно не установлено.

Распространение Олова в природе. Олово - характерный элемент верхней части земной коры, его содержание в литосфере 2,5·10 -4 % по массе, в кислых изверженных породах 3·10 -4 "%, а в более глубоких основных 1,5·10 -4 %; еще меньше Олова в мантии. Концентрирование Олова связано как с магматическими процессами (известны "оловоносные граниты", пегматиты, обогащенные Оловом), так и с гидротермальными процессами; из 24 известных минералов Олова 23 образовались при высоких температурах и давлениях. Главное промышленное значение имеет касситерит SnO 2 , меньшее - станнин Cu 2 FeSnS 4 . В биосфере Олово мигрирует слабо, в морской воде его лишь 3·10 -7 % ; известны водные растения с повышенным содержанием Олова. Однако общая тенденция геохимии Олова в биосфере - рассеяние.

Физические свойства Олова. Олово имеет две полиморфные модификации. Кристаллическая решетка обычного β-Sn (белого Олово) тетрагональная с периодами а = 5,813Å, с = 3,176Å; плотность 7,29 г/см 3 . При температурах ниже 13,2 °С устойчиво α-Sn (серое Олово) кубической структуры типа алмаза; плотность 5,85 г/см 3 . Переход β->α сопровождается превращением металла в порошок. t пл 231 ,9 °С, t кип 2270 °С. Температурный коэффициент линейного расширения 23·10 -6 (0-100 °С); удельная теплоемкость (0°С) 0,225 кдж/(кг·К), то есть 0,0536 кал/(г·°С); теплопроводность (0°С) 65,8 вт/(м·К.), то есть 0,157 кал/(см·сек·°С); удельное электрическое сопротивление (20 °С) 0,115·10 -6 ом·м, то есть 11,5·10 -6 ом·см. Предел прочности при растяжении 16,6 Мн/м 2 (1,7 кгс/мм 2); относительное удлинение 80-90% ; твердость по Бринеллю 38,3-41,2 Мн/м 2 (3,9-4,2 кгс/мм 2). При изгибании прутков Олова слышен характерный хруст от взаимного трения кристаллитов.

Химические свойства Олова. В соответствии с конфигурацией внешних электронов атома 5s 2 5р 2 Олово имеет две степени окисления: +2 и +4; последняя более устойчива; соединения Sn (II) - сильные восстановители. Сухим и влажным воздухом при температуре до 100 °С Олово практически не окисляется: его предохраняет тонкая, прочная и плотная пленка SnO 2 . По отношению к холодной и кипящей воде Олово устойчиво. Стандартный электродный потенциал Олова в кислой среде равен -0,136 в. Из разбавленных НCl и H 2 SO 4 на холоду Олово медленно вытесняет водород, образуя соответственно хлорид SnCl 2 и сульфат SnSO 4 . В горячей концентрированной H 2 SO 4 при нагревании Олово растворяется, образуя Sn(SO 4) 2 и SO 2 . Холодная (0°С) разбавленная азотная кислота действует на Олово по реакции:

4Sn + 10HNO 3 = 4Sn(NO 3) 2 + NH 4 NO 3 + 3H 2 O.

При нагревании с концентрированной HNO 3 (плотность 1,2-1,42 г/мл) Олово окисляется с образованием осадка метаоловянной кислоты H 2 SnO 3 , степень гидротации которой переменна:

3Sn + 4HNO 3 + n H 2 O = 3H 2 SnO 3 ·nH 2 O + 4NO.

При нагревании Олова в концентрированных растворах щелочей выделяется водород и образуется гексагидростаниат:

Sn + 2KOH + 4H 2 O = K 2 + 2H 2 .

Кислород воздуха пассивирует Олово, оставляя на его поверхности пленку SnO 2 . Химически оксид (IV) SnO 2 очень устойчив, а оксид (II) SnO быстро окисляется, его получают косвенным путем. SnO 2 проявляет преимущественно кислотные свойства, SnO - основные.

С водородом олово непосредственно не соединяется; гидрид SnH 4 образуется при взаимодействии Mg 2 Sn с соляной кислотой:

Mg 2 Sn + 4HCl = 2MgCl 2 + SnH 4 .

Это бесцветный ядовитый газ, t кип -52 °С; он очень непрочен, при комнатной температуре разлагается на Sn и H 2 в течение нескольких суток, а выше 150°С - мгновенно. Образуется также при действии водорода в момент выделения на соли Олова, например:

SnCl 2 + 4HCl + 3Mg = 3MgCl 2 + SnH 4 .

С галогенами олово дает соединения состава SnX 2 и SnX 4 . Первые солеобразны и в растворах дают ионы Sn 2+ , вторые (кроме SnF 4) гидролизуются водой, но растворимы в неполярных органических жидкостях. Взаимодействием Олова с сухим хлором (Sn + 2Cl 2 = SnCl 4) получают тетрахлорид SnCl 4 ; это бесцветная жидкость, хорошо растворяющая серу, фосфор, иод. Раньше по приведенной реакции удаляли Олово с вышедших из строя луженых изделий. Сейчас способ мало распространен из-за токсичности хлора и высоких потерь Олова.

Тетрагалогениды SnX 4 образуют комплексные соединения с Н 2 О, NH 3 , оксидами азота, РСl 5 , спиртами, эфирами и многими органическими соединениями. С галогеноводородными кислотами галогениды Олова дают комплексные кислоты, устойчивые в растворах, например H 2 SnCl 4 и H 2 SnCl 6 . При разбавлении водой или нейтрализации растворы простых или комплексных хлоридов гидролизуются, давая белые осадки Sn(OH) 2 или Н 2 SnО 3 ·nН 2 О. С серой Олово дает нерастворимые в воде и разбавленных кислотах сульфиды: коричневый SnS и золотисто-желтый SnS 2 .

Получение Олова. Промышленное получение Олова целесообразно, если содержание его в россыпях 0,01% , в рудах 0,1%; обычно же десятые и единицы процентов. Олову в рудах часто сопутствуют W, Zr, Cs, Rb, редкоземельные элементы, Та, Nb и другие ценные металлы. Первичное сырье обогащают: россыпи - преимущественно гравитацией, руды - также флотогравитацией или флотацией.

Концентраты, содержащие 50-70% Олова, обжигают для удаления серы, очищают от железа действием НCl. Если же присутствуют примеси вольфрамита (Fe,Mn)WO4 и шеелита CaWO 4 , концентрат обрабатывают НCl; образовавшуюся WO 3 ·H 2 O извлекают с помощью NH 4 OH. Плавкой концентратов с углем в электрических или пламенных печах получают черновое Олово (94-98% Sn), содержащее примеси Cu, Pb, Fe, As, Sb, Bi. При выпуске из печей черновое Олово фильтруют при температуре 500-600 °С через кокс или центрифугируют, отделяя этим основную массу железа. Остаток Fe и Cu удаляют вмешиванием в жидкий металл элементарной серы; примеси всплывают в виде твердых сульфидов, которые снимают с поверхности Олова. От мышьяка и сурьмы Олово рафинируют аналогично - вмешиванием алюминия, от свинца - с помощью SnCl 2 . Иногда Bi и Рb испаряют в вакууме. Электролитическое рафинирование и зонную перекристаллизацию применяют сравнительно редко для получения особо чистого Олова. Около 50% всего производимого Олова составляет вторичный металл; его получают из отходов белой жести, лома и различных сплавов.

Применение Олова. До 40% Олово идет на лужение консервной жести, остальное расходуется на производство припоев, подшипниковых и типографских сплавов. Оксид SnO 2 применяется для изготовления жаростойких эмалей и глазурей. Соль - станнит натрия Na 2 SnO 3 ·3H 2 O используется в протравном крашении тканей. Кристаллический SnS 2 ("сусальное золото") входит в состав красок, имитирующих позолоту. Станнид ниобия Nb 3 Sn - один из наиболее используемых сверхпроводящих материалов.

Токсичность самого Олова и большинства его неорганических соединений невелика. Острых отравлений, вызываемых широко используемым в промышленности элементарным Оловом, практически не встречается. Отдельные случаи отравлений, описанные в литературе, по-видимому, вызваны выделением AsH 3 при случайном попадании воды на отходы очистки Олова от мышьяка. У рабочих оловоплавильных заводов при длительном воздействии пыли оксида Олова (так называемое черное Олово, SnO) могут развиться пневмокониозы; у рабочих, занятых изготовлением оловянной фольги, иногда отмечаются случаи хронической экземы. Тетрахлорид Олова (SnСl 4 ·5Н 2 О) при концентрации его в воздухе свыше 90 мг/м 3 раздражающе действует на верхние дыхательные пути, вызывая кашель; попадая на кожу, хлорид Олова вызывает ее изъязвления. Сильный судорожный яд - оловянистый водород (станнометан, SnH 4), но вероятность образования его в производственных условиях ничтожна. Тяжелые отравления при употреблении в пищу давно изготовленных консервов могут быть связаны с образованием в консервных банках SnH 4 (за счет действия на полуду банок органических кислот содержимого). Для острых отравлений оловянистым водородом характерны судороги, нарушение равновесия; возможен смертельный исход.

Органические соединения Олова, особенно ди- и триалкильные, обладают выраженным действием на центральную нервную систему. Признаки отравления триалкильными соединениями: головная боль, рвота, головокружение, судороги, парезы, параличи, зрительные расстройства. Нередко развиваются коматозное состояние, нарушения сердечной деятельности и дыхания со смертельным исходом. Токсичность диалкильных соединений Олова несколько ниже, в клинической картине отравлений преобладают симптомы поражения печени и желчевыводящих путей.

Олово как художественный материал. Отличные литейные свойства, ковкость, податливость резцу, благородный серебристо-белый цвет обусловили применение Олова в декоративно-прикладном искусстве. В Древнем Египте из Олова выполнялись украшения, напаянные на другие металлы. С конца 13 века в западноевропейских странах появились сосуды и церковная утварь из Олова, близкие серебряным, но более мягкие по абрису, с глубоким и округлым штрихом гравировки (надписи, орнаменты). В 16 веке Ф. Брио (Франция) и К. Эндерлайн (Германия) начали отливать парадные чаши, блюда, кубки из Олова с рельефными изображениями (гербы, мифологические, жанровые сцены). А. Ш. Буль вводил Олово в маркетри при отделке мебели. В России изделия из Олова (рамы зеркал, утварь) получили широкое распространение в 17 веке; в 18 веке на севере России расцвета достигло производство медных подносов, чайников, табакерок, отделанных оловянными накладками с эмалями. К началу 19 века сосуды из Олова уступили место фаянсовым и обращение к Олову как художественному материалу стало редким. Эстетические достоинства современных декоративных изделий из Олова - в четком выявлении структуры предмета и зеркальной чистоте поверхности, достигаемой литьем без последующей обработки.

Олово или Stannum (лат.) представляет собой легкоплавкий, пластичный металл с серебристо-белым цветом (см. фото). Латинское название означает «прочный, стойкий» и изначально так называли сплав со свинцом и серебром. А славянское название, имеющее корни балтийские просто означает цвет металла – белый.

Этот элемент относится к семи древнейшим металлам. Уже 6000 лет назад человечество было с ним знакомо. Наибольшее распространение он получил в составе бронзы и был стратегически важным во времена «бронзового века» около 4000 лет назад. Из этого состава печатались деньги вплоть до 16 века, изготавливалась посуда и ювелирные изделия, применялся как антикоррозионное покрытие. Упоминания о металле были встречены даже на страницах Библии.

В природе встречается в виде минералов. Самые распространенные - касситерит (речное олово) и станин (оловянный колчедан). Из них добывают олово в промышленных целях: электроника, аккумуляторы, обработка стекла (оно становится непроницаемым для лучей рентгеновского аппарата). Также соединения этого элемента используется для изготовления консервных банок, веществ, отгоняющих насекомых.

Есть еще одна замечательная способность у олова – его присутствие в составе материалов музыкального инструмента, которое будет отличать этот инструмент великолепной чистотой звука и мелодичностью.

В составе живых организмов элемент был обнаружен в 1923 году. При исследовании останков древних людей оказалось, что содержание олова в костях в 1000 раз меньше, чем у современного человека. Возможно, это связано с тем, что мы можем поглощать его из воздуха. А развитие промышленности привело к тому, что около четвертой части миллиона тонн оказываются в атмосфере в виде выхлопных газов.

Действие олова

Действие макроэлемента на живой организм сложно назвать токсичным, его часто применяют в пищевой промышленности. Его роль до конца не изучена. Элемент содержится в основном в костях, а также некоторое его количество находится в легких, сердце, почках, кишечнике. А с возрастом может увеличиться содержание в легких, это связано с воздействием окружающей среды.

На сегодняшний день известны такие факты биологического воздействия:

  • участие в процессах роста;
  • входит в состав фермента желудка – гастрина;
  • активно участвует в реакциях окислительно-восстановительного характера;
  • за счет концентрации в костных тканях способствует их правильному развитию и развитию опорно-двигательного аппарата.

Может оказывать полезное воздействие на организм лишь будучи в составе жирных кислот. Минеральные соединения могут оказать отравляющее действие.

Относительно недавно оловом пользовались медики для лечения многих заболеваний – эпилепсия, неврозы, гельминтоз, экзема, помутнение роговицы глаза. В основном практиковалось наружное применение хлористого олова. К счастью, сегодня прогресс принес более эффективные и менее токсичные препараты без содержания металла.

Олово – достаточно неактивный в химическом отношении элемент, поэтому с этой точки зрения особой пользы и вреда он не принесет. Единственное замеченное взаимодействие – с медью и цинком. Они взаимно нейтрализуют действие друг друга.

Суточная норма

Суточная норма макроэлемента находится в пределах от 2 до 10 мг в зависимости от возраста и пола. Хотя за день в наш организм поступает около 50 мг только с едой (а токсичной считают дозировку в 20 мг) , отравления не произойдет. Все объясняется тем, что наш желудочно-кишечный тракт способен усвоить лишь 3-5% от всего поступающего количества. Весь остальной металл просто выводится естественным путем с мочой.

Недостаток олова в организме человека

Недостаток макроэлемента в организме происходит при хроническом поступлении менее 1 мг в сутки. Такой процесс может сопровождаться ухудшением слуха, потерей веса из-за утраты аппетита, замедлением роста, дисбалансом минерального состава, выпадением волос (частичная или полная патология).

Такие процессы довольно редки, т.к. обычно достаточно поступления макроэлемента с продуктами питания и чаще всего вызываются проблемами с пищеварением и сложностями с усвоением.

Вред избыточного приема олова

Переизбыток макроэлемента, в основном, рискуют получить сотрудники предприятий, на которых используются соли олова: производство пластмасс, пестицидов, линолеума и др. За счет регулярного поглощения паров и пыли развиваются заболевания легких. Также в группе риска находятся люди, проживающие в опасной близости от автострад (в переделах полукилометра) – они получают высокую дозу из выхлопных газов. Олово в больших количествах подавляют содержание магния, который способен защитить клетки от новообразований.

Есть еще один источник высоких доз элемента – консервные банки. При длительном хранении они начинают разрушаться, особенно если содержимое богато нитратами. Поэтому открыв такую банку, рекомендуется сразу переложить продукты в стекло. Хранить в открытом виде консервы категорически запрещается.

Организмы пожилых людей и детей не могут быстро выводить олово из организма, поэтому он начинает накапливаться. Достаточно совсем мизерной дозы, чтобы вызвать отравление.

Существует интересная теория из истории о падении Римской империи. Олово попадало в вино, обильно поглощаемое древними римлянами, из посуды и вызывало сбои в состоянии здоровья. Только в седьмом веке медики смогли определить причину заболевания, но было уже поздно – империя пала.

Осложнения, которые возникают вследствие избытка олова, довольно неприятны. Опасной считается доза в 2 грамма макроэлемента, но она не является летальной (такая норма еще не определена). Она может вызывать анемию, заболевания печени, дыхательных путей, расстройства нервной системы. Может развиться такое заболевание, как станноз – тяжелый кашель, сопровождающийся отделением мокрот и задышкой.

Но это еще не все – основных симптомов отравления достаточно много:


В случае поступления олова в больших дозах в течение длительного времени есть риск возникновения структурных изменений в хромосомах, что может привести к серьезным последствиям на генетическом уровне.

При воздействии на центральную нервную систему этот макроэлемент способен вызывать депрессивные состояния. А дети могут отличаться агрессивностью, отсутствием заинтересованности в учебе, играх, чтению.

Лечение обычно назначается по симптомам – диеты, гепатопротекторы (защита печени), препараты, содержащие медь и цинк. При критических отравлениях вводят медикаменты, способные связывать и выводить токсины – хелатирующие вещества.

В каких продуктах питания содержится?

Продукты, содержащие олово, можно найти как животного происхождения, так и растительного. Основная масса поступает с мясом свиньи, говядиной, птицей, молоком и его производными. Также некоторое количество элемента могут дать горох, семена подсолнуха, картофель, свекла. Другие овощи содержат совсем малые дозы олова.

Кроме этого мы ежедневно получаем макроэлемент из воды и воздуха. И не забывайте о том, что частое употребление консервов тоже может снабдить организм избыточным количесвтом олова.

Некоторые растения способны поглощать большое количество элемента из окружающей среды. Поэтому стоит аккуратно относиться к продуктам, выращенным возле автострад и промышленных зон.

Показания к назначению

Показания к назначению макроэлемента, в основном, применяются гомеопатами. Они лечат оловом такие заболевания, как:

  • бронхит, болезни легких;
  • мигрени;
  • панкреатит;
  • малый рост и вес;
  • а также применяют в качестве глистогонного препарата.

Замечено, что при приеме малых доз медикаментов, содержащих олово, часто изменяется психическое состояние пациента – хорошее настроение сменяется раздражительностью, меланхоличностью, слезивостью. Поэтому такие назначение применяются в крайне редких случаях.

Введение

Список литературы

Введение

Важнейшим этапом развития стало использование железа и его сплавов. В середине XIX века осваивается конвертерный метод производства стали, а к концу века - мартеновский.

Сплавы на основе железа и в настоящее время являются основным конструкционным материалом.

Бурный рост промышленности требует появления материалов с самыми различными свойствами.

Середина XX века ознаменована появлением полимеров - новых материал лов, свойства которых резко отличаются от свойств металлов.

Полимеры широко применяют также в различных областях техники: машиностроении, химической и пищевой промышленности и ряде других областей.

Развитие техники требует материалов с новыми уникальными свойствами. Для атомной энергетики и космической техники необходимы материалы, которые могут работать при весьма высоких температурах.

Компьютерные технологии стали возможными только при использовании материалов с особыми электрическими свойствами.

Таким образом, материаловедение - одна из важнейших, приоритетных наук, определяющих технический прогресс.

Олово - один из немногих металлов, известных человеку еще с доисторических времен. Олово и медь были открыты раньше железа, а сплав их, бронза, - это, по-видимому, самый первый "искусственный" материал, первый материал, приготовленный человеком.

Результаты археологических раскопок позволяют считать, что еще за пять тысячелетий до нашей эры люди умели выплавлять и само олово. Известно, что древние египтяне олово для производства бронзы возили из Персии.

Под названием "трапу" этот металл описан в древнеиндийской литературе. Латинское название олова stannum происходит от санскритского "ста", что означает "твердый".

Олово

Свойства олова:

Атомный номер ё50

Атомная масса 118,710

Стабильные 112, 114-120, 122, 124

Нестабильные 108-111, 113, 121, 123, 125-127

Температура плавления, ° С 231,9

Температура кипения, ° С 262,5

Плотность, г/см3 7,29

Твердость (по Бринеллю) 3,9

Производство олова из руд и россыпей всегда начинается с обогащения. Методы обогащения оловянных руд довольно разнообразны. Применяют, в частности, гравитационный метод, основанный на различии плотности основного и сопутствующих минералов. При этом нельзя забывать, что сопутствующие далеко не всегда бывают пустой породой. Часто они содержат ценные металлы, например вольфрам, титан, лантаноиды. В таких случаях из оловянной руды пытаются извлечь все ценные компоненты.

Состав полученного оловянного концентрата зависит от сырья, и еще от того, каким способом этот концентрат получали. Содержание олова в нем колеблется от 40 до 70%. Концентрат направляют в печи для обжига (при 600...700°C), где из него удаляются относительно летучие примеси мышьяка и серы. А большую часть железа, сурьмы, висмута и некоторых других металлов уже после обжига выщелачивают соляной кислотой. После того как это сделано, остается отделить олово от кислорода и кремния. Поэтому последняя стадия производства чернового олова - плавка с углем и флюсами в отражательных или электрических печах. С физико-химической точки зрения этот процесс аналогичен доменному: углерод "отнимает" у олова кислород, а флюсы превращают двуокись кремния в легкий по сравнению с металлом шлак.

В черновом олове примесей еще довольно много: 5...8%. Чтобы получить металл сортовых марок (96,5...99,9% Sn), используют огневое или реже электролитическое рафинирование. А нужное полупроводниковой промышленности олово чистотой почти шесть девяток - 99,99985% Sn - получают преимущественно методом зонной плавки.

Олово получают также регенерацией отходов белой жести. Для того чтобы получить килограмм олова, не обязательно перерабатывать центнер руды, можно поступить иначе: "ободрать" 2000 старых консервных банок.

Всего лишь полграмма олова приходится на каждую банку. Но помноженные на масштабы производства эти полуграммы превращаются в десятки тонн... Доля "вторичного" олова в промышленности капиталистических стран составляет примерно треть общего производства. В нашей стране работают около ста промышленных установок по регенерации олова.

Снять олово с белой жести механическими способами почти невозможно, поэтому используют различие в химических свойствах железа и олова. Чаще всего жесть обрабатывают газообразным хлором. Железо в отсутствие влаги с ним не реагирует. Олово же соединяется с хлором очень легко. Образуется дымящаяся жидкость - хлорное олово SnCl4, которое применяют в химической и текстильной промышленности или отправляют в электролизер, чтобы получить там из него металлическое олово. И опять начнется "круговерть": этим оловом покроют стальные листы, получат белую жесть. Из нее сделают банки, банки заполнят едой и запечатают. Потом их вскроют, консервы съедят, банки выбросят. А потом они (не все, к сожалению) вновь попадут на заводы "вторичного" олова.

Другие элементы совершают круговорот в природе с участием растений, микроорганизмов и т.д. Круговорот олова - дело рук человеческих.

Сплавы. Одна треть олова идет на изготовление припоев. Припои - это сплавы олова в основном со свинцом в разных пропорциях в зависимости от назначения. Сплав, содержащий 62% Sn и 38% Pb, называется эвтектическим и имеет самую низкую температуру плавления среди сплавов системы Sn - Pb. Он входит в составы, используемые в электронике и электротехнике. Другие свинцово-оловянные сплавы, например 30% Sn + 70% Pb, имеющие широкую область затвердевания, используются для пайки трубопроводов и как присадочный материал. Применяются и оловянные припои без свинца. Сплавы олова с сурьмой и медью используются как антифрикционные сплавы (баббиты, бронзы) в технологии подшипников для различных механизмов.

Состав и свойства некоторых сплавов олова

Многие сплавы олова - истинные химические соединения элемента №50 с другими металлами. Сплавляясь, олово взаимодействует с кальцием, магнием, цирконием, титаном, многими редкоземельными элементами. Образующиеся при этом соединения отличаются довольно большой тугоплавкостью. Так, станнид циркония Zr3Sn2 плавится лишь при 1985°C. И "виновата" здесь не только тугоплавкость циркония, но и характер сплава, химическая связь между образующими его веществами. Или другой пример. Магний к числу тугоплавких металлов не отнесешь, 651°C - далеко не рекордная температура плавления. Олово плавится при еще более низкой температуре - 232°C. А их сплав - соединение Mg2Sn - имеет температуру плавления 778°C. Современные оловянно-свинцовые сплавы содержат 90-97% Sn и небольшие добавки меди и сурьмы для увеличения твердости и прочности.

Соединения. Олово образует различные химические соединения, многие из которых находят важное промышленное применение. Кроме многочисленных неорганических соединений, атом олова способен к образованию химической связи с углеродом, что позволяет получать металлоорганические соединения, известные как оловоорганические. Водные растворы хлоридов, сульфатов и фтороборатов олова служат электролитами для осаждения олова и его сплавов. Оксид олова применяют в составе глазури для керамики; он придает глазури непрозрачность и служит красящим пигментом. Оксид олова можно также осаждать из растворов в виде тонкой пленки на различных изделиях, что придает прочность стеклянным изделиям (или уменьшает вес сосудов, сохраняя их прочность). Введение станната цинка и других производных олова в пластические и синтетические материалы уменьшает их возгораемость и препятствует образованию токсичного дыма, и эта область применения становится важнейшей для соединений олова. Огромное количество оловоорганических соединений расходуется в качестве стабилизаторов поливинилхлорида - вещества, используемого для изготовления тары, трубопроводов, прозрачного кровельного материала, оконных рам, водостоков и др. Другие оловоорганические соединения используются как сельскохозяйственные химикаты, для изготовления красок и консервации древесины.

Важнейшие соединения:

Диоксид олова SnO 2 не растворим в воде. В природе - минерал касситерит (оловянный камень). Получают окислением олова кислородом. Применение: для получения олова, белый пигмент для эмалей, стекол, глазурей.

Оксид олова SnO, черные кристаллы. На воздухе выше 400°С окисляется, не растворим в воде. Применение: черный пигмент в производстве рубинового стекла, для получения солей олова.

Гидрид олова SnH 2 получается в незначительных количествах как примесь к водороду при разложении кислотами сплавов олова с магнием (т.е. при действии водорода в момент выделения). При хранении постепенно разлагается на свободное олово и водород.

Тетрахлорид олова SnCl 4 дымящая на воздухе жидкость, растворимо в воде. Применение: протрава при крашении тканей, катализатор полимеризации.

Дихлорид олова SnCl 2 растворим в воде. Образует дигидрат. Применение: восстановитель в органическом синтезе, протрава при крашении тканей, для обесцвечивания нефтяных масел.

Дисульфид олова SnS 2 , золотисто-желтые кристаллы, нерастворим. "Сусальное золото" - для отделки под золото дерева, гипса.