Презентация на тему эукариоты. Эукариоты

Характеристика бактерий Распространены повсеместно: в воде, почве, воздухе, живых организмах. Они обнаруживаются как в самых глубоких океанических впадинах, так и на высочайшей горной вершине Земли Эвересте, как во льдах Арктики и Антарктиды, так и в горячих источниках. В почве они проникают на глубину 4 и более км, споры бактерий в атмосфере встречаются на высоте до 20 км, гидросфера вообще не имеет границ обитания этих организмов. Бактерии способны поселяться практически на любом как органическом, так и неорганическом субстрате. Несмотря на простоту строения, они обладают высокой степенью приспособленности к самым разнообразным условиям среды. Это возможно благодаря способности бактерий к быстрой смене поколений. При резкой смене условий существования среди бактерий быстро появляются мутантные формы, способные существовать в новых условиях среды.


Размеры от 1 до 15 мкм. По форме клеток различают: Шаровидные кокки: микрококки делятся в разных плоскостях, лежат одиночно; диплококки делятся в одной плоскости, образуют пары; тетракокки делятся в двух плоскостях, образуют тетрады; стрептококки делятся в одной плоскости, образуют цепочки; стафилококки делятся в разных плоскостях, образуют скопления, напопоминающие грозди винограда; сарцины делятся в трех плоскостях, образуют пакеты по 8 особей. Характеристика бактерий


Вытянутые бациллы (палочковидные) делятся в разных плоскостях, лежат одиночно; Извитые – вибрионы (в виде запятой); спириллы имеют от 4 до 6 витков; спирохеты длинные и тонкие извитые формы с числом витков от 6 до 15. Помимо основных, в природе встречаются и другие, весьма разнообразные, формы бактериальных клеток. Характеристика бактерий


Клеточная стенка. Бактериальная клетка заключена в плотную, жесткую клеточную стенку, на долю которой приходится от 5 до 50% сухой массы клетки. Клеточная стенка выполняет роль наружного барьера клетки, устанавливающего контакт микроорганизма со средой. Основным компонентом клеточной стенки бактерий является полисахарида муреин. По содержанию муреина все бактерии подразделяются на две группы: грамположительные и грамотрицательные. Характеристика бактерий


У многих бактерий поверх клеточной стенки располагается слизистый матрикс капсула. Капсулы образованы полисахаридами. Иногда в состав капсулы входят полипептиды. Как правило, капсула выполняет защитную функцию, предохраняя клетку от действия неблагоприятных факторов среды. Кроме того, она может способствовать прикреплению к субстрату и участвовать в передвижении. Характеристика бактерий


Цитоплазматическая мембрана регулирует поступление питательных веществ в клетку и выход продуктов метаболизма наружу. Обычно темпы роста цитоплазматической мембраны опережают темпы роста клеточной стенки. Это приводит к тому, что мембрана часто образует многочисленные инвагинации (впячивания) различной формы мезосомы. Характеристика бактерий


Мезосомы, связанные с нуклеоидом, играют определенную роль в репликации ДНК и последующем расхождении хромосом. Возможно, мезосомы обеспечивают разделение клетки на отдельные обособленные отсеки, создавая тем самым благоприятные условия для протекания ферментативных процессов. Характеристика бактерий







Бактериальные клетки могут иметь разнообразные цитоплазматические включения газовые пузырьки, пузырьки, содержащие бактериохлорофилл, полисахариды, отложения серы и другие. Нуклеоид. Бактерии не имеют структурно оформленного ядра. Генетический аппарат бактерий называют нуклеоидом. Он представляет собой молекулу ДНК, сосредоточенную в ограниченном пространстве цитоплазмы. Характеристика бактерий


Молекула ДНК имеет типичное строение. Она состоит из двух полинуклеотидных цепей, образующих двойную спираль. В отличие от эукариот, ДНК имеет кольцевую структуру, а не линейную. Молекулу ДНК бактерий отождествляют с одной хромосомой эукариот. Но если у эукариот в хромосомах ДНК связана с белками, то у бактерий ДНК комплексов с белками не образует. ДНК бактерий закреплена на цитоплазматической мембране в области мезосомы. Характеристика бактерий


Клетки многих бактерий имеют нехромосомные генетические элементы плазмиды. Они представляют собой небольшие кольцевые молекулы ДНК, способные реплицироваться независимо от хромосомной ДНК. Среди них различают F-фактор плазмиду, контролирующую половой процесс. Жгутики. Среди бактерий имеется много подвижных форм. Основную роль в передвижении играют жгутики. Жгутики бактерий только внешне похожи на жгутики эукариот, строение же их иное. Они имеют меньший диаметр и не окружены цитоплазматической мембраной. Нить жгутика состоит из 3-11 винтообразно скрученных фибрилл, образованных белком флагеллином. Характеристика бактерий




У основания располагается крюк и парные диски, соединяющие нить с цитоплазматической мембраной и клеточной стенкой. Движутся жгутики, вращаясь в мембране. Число и расположение жгутиков на поверхности клетки может быть различно. Фимбрии это тонкие нитевидные структуры на поверхности бактериальных клеток, представляющие собой короткие прямые полые цилиндры, образованные белком пилином. Благодаря фимбриям, бактерии могут прикрепляться к субстрату или сцепляться друг с другом. Особые фимбрии половые фимбрии, или F- пили обеспечивают обмен генетического материала между клетками. Характеристика бактерий


При наступлении неблагоприятных условий, у грамположительных бактерий происходит образование эндоспор. При этом клетка обезвоживается, нуклеоид сосредотачивается в спорогенной зоне. Образуются защитные оболочки, предохраняющие споры бактерий от действия неблагоприятных условий (споры многих бактерий выдерживают нагревание до 130˚С, сохраняют жизнеспособность десятки лет). При наступлении благоприятных условий спора прорастает, и образуется вегетативная клетка. Характеристика бактерий


Подведем итоги: Что известно о форме бактерий? Кокки (диплококки, тетракокки, стрептококки, сарцины, стафилококки), бациллы, вибрионы, спириллы, спирохеты). Каковы размеры бактерий? От 1 до 15 микрон (мкм). Как устроена клеточная оболочка бактерии? Плазмалемма и клеточная стенка из муреина. У грам-отрицательных две мембраны. Как организован генетический материал бактерий? Нуклеоид – кольцевая ДНК и плазмиды. Какие органоиды есть в бактериальных клетках? Мезосомы, хлоросомы, 70-S рибосомы, жгутики. Чем жгутик бактерий отличается от жгутика эукариот? Не покрыт мембраной, состоит из нескольких скрученных вместе фибилл флагеллина. Могут ли бактерии размножаться спорами? Нет споры – способ переживания неблагоприятных условий.


Олимпиадникам! Спорообразующие аэробные бактерии, у которых размер споры не превышает диаметр клетки, называются бациллами. Спорообразующие анаэробные бактерии, у которых размер споры превышает диаметр клетки, и поэтому они принимают форму веретена и называются клостридиями (от лат. Clostridium – веретено). Характеристика бактерий


Олимпиадникам! Риккетсии – мелкие, грамотрицательные палочковидные бактерии размером до 1 мкм. Членистоногие – их хозяева и переносчики. У человека вызывают сыпной тиф, клещевой риккетсиоз, пятнистую лихорадку Скалистых гор. Микоплазмы – мелкие бактерии, не имеющие клеточной стенки, окруженные только цитоплазматической мембраной. Осмотически чувствительны, у человека вызывают заболевание по типу респираторной инфекции. Актиномицеты – (лучистые грибы), занимают промежуточное положение между бактериями и грибами. Ветвящиеся грамположительные бактерии. В пораженных тканях образуют мицелий из плотно переплетенных нитей (гифов) в виде лучей, отходящих от центра и заканчивающихся колбовидными утолщениями. На воздушных гифах могут образовываться споры, служащие для размножения.




Другая группа, автотрофы, способна синтезировать органические вещества из неорганических. Среди них различают: фотоавтотрофов, синтезирующих органические вещества за счет энергии света, и хемоавтотрофов, синтезирующих органические вещества за счет химической энергии окисления неорганических веществ: серы, сероводорода, аммиака и т.д. К ним относятся нитрифицирующие бактерии, железобактерии, водородные бактерии и т.д. Фотоавтотрофы: Фотосинтезирующие серобактерии (зеленые и пурпурные) Имеют фотосистему-1 и при фотосинтезе не выделяют кислород, донор водорода – Н 2 S: 6СО Н 2 S С 6 Н 12 О S + 6Н 2 О У цианобактерий (синезеленых) появилась фотосистема-2 и при фотосинтезе кислород выделяется, донором водорода для синтеза органики является Н 2 О: 6СО Н 2 О С 6 Н 12 О 6 + 6О 2 + 6Н 2 О Физиология бактерий


Хемоавтотрофы: Хемоавтотрофы используют энергию химических связей. Открыты в 1887 году С.Н.Виноградским. Важнейшая группа хемоавтотрофов – нитрифицирующие бактерии, способные окислять аммиак, образующийся при гниении органических остатков, сначала до азотистой, а затем до азотной кислоты: 2NH 3 + 3O 2 = 2HNO 2 + 2H 2 O кДж 2НNО 2 + O 2 = 2HNO кДж Бесцветные серобактерии окисляют сероводород и накапливают в своих клетках серу: 2Н 2 S + О 2 = 2Н 2 О + 2S кДж При недостатке сероводорода бактерии производят дальнейшее окисление серы до серной кислоты: 2S + 3О 2 + 2Н 2 О = 2Н 2 SО кДж Железобактерии окисляют двувалентное железо до трехвалентного: 4FeCO 3 + O 2 + H 2 O = 4Fe(OH) 3 + 4CO кДж Водородные бактерии используют энергию, выделяющуюся при окислении молекулярного водорода: 2Н 2 + О 2 = 2Н 2 О кДж Физиология бактерий


Размножение бактерий. Бактерии способны к интенсивному размножению. Половое размножение у бактерий отсутствует, известно только бесполое размножение. Некоторые бактерии при благоприятных условиях способны делиться каждые 20 минут. Бесполое размножение Бесполое размножение является основным способом размножения бактерий. Оно может осуществляться путем бинарного деления и почкования. Большинство бактерий размножается путем бинарного равновеликого поперечного деления клеток. При этом образуются две одинаковые дочерние клетки. Перед делением происходит репликация ДНК. Почкование. Некоторые бактерии размножаются путем почкования. При этом на одном из полюсов материнской клетки образуется короткий вырост гифа, на конце которого формируется почка, в нее переходит один из поделившихся нуклеоидов. Почка разрастается, превращаясь в дочернюю клетку, и отделяется от материнской в результате формирования перегородки между почкой и гифой. Физиология бактерий



Половой процесс, или генетическая рекомбинация. Половое размножение отсутствует, но известен половой процесс. Гаметы у бактерий не образуются, слияния клеток нет, но происходит главнейшее событие полового процесса обмен генетической информацией. Этот процесс называют генетической рекомбинацией. Часть ДНК (реже вся) клеткой-донором передает клетке-реципиенту и замещает часть ДНК клетки-реципиента. Образовавшуюся ДНК называют рекомбинантной. Она содержит гены обеих родительских клеток. Физиология бактерий


Различают три способа генетической рекомбинации: конъюгация, трансдукция, трансформация; Конъюгация это прямая передача участка ДНК от одной клетки другой во время непосредственного контакта клеток друг с другом. Клетка-донор образует называемых F-пилю, ее образование контролируется особой плазмидой F-плазмидой. Во время конъюгации ДНК передается только в одном направлении (от донора к реципиенту), обратной передачи нет. Физиология бактерий




Участие в круговороте химических элементов (азота, углерода, кислорода и др.). Группы бактерий, принимающих участие в круговороте азота Азотфиксирующие бактерии Использование свободного азота для образования соединений, доступных другими организмами Обогащение почвы соединениями азота Аммонифицирующие бактерии Разложение азотсодержащих веществ (белков, нуклеиновых кислот) с образованием аммиака Минерализация Нитрифицирующие бактерии Окисление солей аммиака в нитриты, затем в нитраты Минерализация Денитрифицирующие бактерии Восстановление нитритов и нитратов до свободного азота Минерализация Значение бактерий Разрушение органических остатков. Участие в почвообразовании. Участие в образовании атмосферы. Использование в пищевой промышленности для получения молочно- кислых продуктов Получение антибиотиков, аминокислот, витаминов и др. Очистка сточных вод, образование метана Симбионты многих организмов (кишечная палочка у человека) Вызывают инфекционные заболевания(туберкулёз, ангина) В настоящее время, используя трансформированные кишечные палочки, получают инсулин, соматотропный гормон, интерферон Значение бактерий




Значение бактерий Этапы: Рестрикция (разрезание ДНК человека и плазмиды рестриктазами) Создание вектора, содержащего все управляющие гены (регулятор, оператор, маркерные гены) Лигирование («вшивание» фрагмента ДНК человека в плазмиды лигазами) Трансформация (введение рекомбинантных плазмид в бактериальные клетки) Скрининг (отбор таких трансформированных бактерий, которые несут нужный для человека ген) Размножение именно тех трансформированных бактерий, которые несут нужный для человека ген.

Прокариоты и эукариотыПРОКАРИОТЫ И ЭУКАРИОТЫ
Вдовина Е.

Прокариоты и эукариоты. У современных и
ископаемых организмов известны два типа
клеток: прокариотическая и эукариотическая.
Эти клетки так сильно различаются по
особенностям строения, что было выделено два
надцарства - прокариот (доядерных) и
эукариот (настоящих ядерных).
Промежуточные формы между этими
крупнейшими таксонами живого пока
неизвестны.

Прокариоты

ПРОКАРИОТЫ
Прокариоты. Средняя величина
прокариотических клеток 5 мкм. У них нет
никаких внутренних мембран, кроме впячиваний
плазматической мембраны. Вместо клеточного
ядра имеется его эквивалент (нуклеоид),
лишенный оболочки и состоящий из однойединственной молекулы ДНК. Кроме того
бактерии могут содержать ДНК в форме
крошечных плазмид, сходных с внеядерными ДНК
эукариот. В прокариотических клетках, способных
к фотосинтезу (сине-зеленые водоросли, зеленые
и пурпурные бактерии) имеются различно
структурированные крупные впячивания
мембраны – тилакоиды, по своей функции
соответствующие пластидам эукариот.
Аналогичные впячивания (мезосомы) в
бесцветных клетках выполняют функции
метохондрий.

Эукариоты

ЭУКАРИОТЫ
Эукариоты. Эукариотические клетки больше по
размеру и имеют более сложную организацию, чем
клетки прокариот. Они содержат больше ДНК и
различных компонентов, обеспечивающих ее
сложные функции. ДНК эукариот заключена в
окруженное мембраной ядро, а в цитоплазме
находится много других окруженных мембранами
органелл. К ним относятся митохондрий,
осуществляющие окончательное окисление молекул
пищи, а также (в растительных клетках)
хлоропласты, в которых идет фотосинтез. Целый ряд
данных свидетельствует о происхождении
митохондрий и хлоропластов от ранних
прокариотических клеток, ставших внутренними
симбионтами большей по размеру анаэробной
клетки. Другая отличительная особенность
эукариотических клеток - это наличие цитоскелета
из белковых волокон, организующего цитоплазму и
обеспечивающего механизм движения.

Прокариотическая клетка

Бактерии – «великие могильщики природы» Луи Пастер. Эти маленькие организмы создали жизнь на Земле, совершают глобальный круговорот веществ в природе, а также стоят на службе у человека.

Свойства Виды прокариот 1. Происхождение 2. Среда обитания и распространенность 3. Размеры 4. Форма 5. Строение бактериальной клетки 6. Обмен веществ, отношение к кислороду 7. Питание 8. Размножение 9. Спорообразование 10. Роль в природе 11. Использование человеком

Происхождение прокариот Первоначально появились в бескислородной среде 2,5-3 млрд. лет назад в морях

Среда обитания прокариот Атмосфера Гидросфера Литосфера Внутри клеток

Размеры Размеры бактериальных клеток колеблются в пределах от 1 до 10-15 мкм

Форма Кокки Диплококки Тетракокки

Форма Стрептококки

Форма Сарцины Стафилококи Палочки (бациллы)

Форма Спириллы Спирохеты Вибрионы

Строение бактериальной клетки На поверхности бактерий часто заметны разного рода жгутики (пилли) и ворсинки (фимбии) – органоиды движения, с помощью которых они передвигаются путем скольжения.

Строение бактериальной клетки 1 - клеточная стенка, 2 - наружная цитоплазматическая мембрана, 3 - хромосома (кольцевая молекула ДНК), 4 - впячивание наружной цитоплазматической мембраны, 5 - вакуоли, 6 - мезосома (вырост наружной мембраны), 7 - стопки мембран, в которых осуществляется фотосинтез, 8 - рибосома, 9 - жгутики.

Строение бактериальной клетки Клеточная стенка прокариот жесткая, содержит полисахариды и аминокислоты. Основной упрочняющий компонент – муреин Клеточная стенка многих бактерий сверху покрыта слоем слизи. Цитоплазма окружена мембраной, отделяющей ее изнутри от клеточной стенки.

Строение бактериальной клетки Основная особенность – отсутствие ядра, ограниченного оболочкой. Наследственная информация у бактерий заключена в одной хромосоме. Рибосомы свободные меньше, чем у эукариотов; на них осуществляется биосинтез белка

Обмен веществ По отношению к кислороду прокариоты делятся на две группы: анаэробные (не нуждающиеся в кислороде); аэробные, (живущие в кислородной среде); некоторые бактерии могут жить как в бескислородной, так и в кислородной средах

Размножение У бактерий выделяют два способа размножения: путем деления клетки надвое и половой

Спорообразование Многим бактериям свойственно спорообразование. Споры возникают, когда ощущается недостаток в питательных веществах или когда в среде накапливаются продукты обмена, т.е. возникают неблагоприятные условия

Роль в природе А) Бактерии разрушают остатки органического вещества, производят минерализацию. Б) Бактерии – симбионты (кишечная палочка), поселяясь в пищеварительном тракте у животных, расщепляют целлюлозу до глюкозы, и обеспечивает усвоение этих веществ организмом животных, производят витамины и другие вещества. В) Азотфиксирующие (клубеньковые) бактерии способствуют усвоению почвенного азота корнями растений.

Использование человеком Получение многих пищевых и технических продуктов невозможно без участия различных бродильных бактерий (на рис. бифидобактерии)

Отрицательная роль бактерий Различные виды гнилостных бактерий вызывают порчу пищевых продуктов. Сальмонеллез, ботулизм, холера дизентерия, являются заболеваниями, связанными с употреблением испорченных продуктов. Коклюш, туберкулез, чума, венерические заболевания, столбняк, воспаление легких и многие другие передаются воздушно – капельным или половым путем.

Почему Луи Пастер назвал прокариотические организмы – великими могильщиками в природе?

Какие ощущения вы испытываете при изучении этой темы?

рассмотреть особенности строения и функции немембранных и двумембранных органоидов.



Характеристика бактерий

Распространены повсеместно: в воде, почве, воздухе, живых организмах. Они обнаруживаются как в самых глубоких океанических впадинах, так и на высочайшей горной вершине Земли - Эвересте, как во льдах Арктики и Антарктиды, так и в горячих источниках. В почве они проникают на глубину 4 и более км, споры бактерий в атмосфере встречаются на высоте до 20 км, гидросфера вообще не имеет границ обитания этих организмов.

Бактерии способны поселяться практически на любом как органическом, так и неорганическом субстрате.

Несмотря на простоту строения, они обладают высокой степенью приспособленности к самым разнообразным условиям среды. Это возможно благодаря способности бактерий к быстрой смене поколений. При резкой смене условий существования среди бактерий быстро появляются мутантные формы, способные существовать в новых условиях среды.


Размеры от 1 до 15 мкм. По форме клеток различают: Шаровидные - кокки:

микрококки - делятся в разных плоскостях, лежат одиночно;

диплококки

тетракокки

стрептококки -

стафилококки -

сарцины -

  • диплококки - делятся в одной плоскости, образуют пары; тетракокки - делятся в двух плоскостях, образуют тетрады; стрептококки - делятся в одной плоскости, образуют цепочки; стафилококки - делятся в разных плоскостях, образуют скопления, напопоминающие грозди винограда; сарцины - делятся в трех плоскостях, образуют пакеты по 8 особей.

Вытянутые - бациллы (палочковидные) - делятся в разных плоскостях, лежат одиночно;

Извитые – вибрионы (в виде запятой); спириллы - имеют от 4 до 6 витков; спирохеты - длинные и тонкие извитые формы с числом витков от 6 до 15.

Помимо основных, в природе встречаются и другие, весьма разнообразные, формы бактериальных клеток.



Клеточная стенка

Бактериальная клетка заключена в плотную, жесткую клеточную стенку, на долю которой приходится от 5 до 50% сухой массы клетки.

Клеточная стенка выполняет роль наружного барьера клетки, устанавливающего контакт микроорганизма со средой.

Основным компонентом клеточной стенки бактерий является полисахарида - муреин. По содержанию муреина все бактерии подразделяются на две группы: грамположительные и грамотрицательные.


У многих бактерий поверх клеточной стенки располагается слизистый матрикс - капсула. Капсулы образованы полисахаридами. Иногда в состав капсулы входят полипептиды. Как правило, капсула выполняет защитную функцию, предохраняя клетку от действия неблагоприятных факторов среды. Кроме того, она может способствовать прикреплению к субстрату и участвовать в передвижении.


Цитоплазматическая мембрана регулирует поступление питательных веществ в клетку и выход продуктов метаболизма наружу.

Обычно темпы роста цитоплазматической мембраны опережают темпы роста клеточной стенки. Это приводит к тому, что мембрана часто образует многочисленные инвагинации (впячивания) различной формы - мезосомы .


Мезосомы, связанные с нуклеоидом, играют определенную роль в репликации ДНК и последующем расхождении хромосом.

Возможно, мезосомы обеспечивают разделение клетки на отдельные обособленные отсеки, создавая тем самым благоприятные условия для протекания ферментативных процессов.


В клетках фотосинтезирующих бактерий имеются внутрицитоплазматические мембранные образования - хроматофоры , обеспечивающие протекание бактериального фотосинтеза.


Для бактерий характерны 70 S -рибосомы, образованные двумя субъединицами: 30 S и 50 S . Рибосомы бактериальных клеток собраны в полисомы, образованные десятками рибосом.


Бактериальные клетки могут иметь разнообразные цитоплазматические включения - газовые вакуоли, пузырьки, содержащие бактериохлорофилл, полисахариды, отложения серы и другие.

Нуклеоид. Бактерии не имеют структурно оформленного ядра. Генетический аппарат бактерий называют нуклеоидом . Он представляет собой молекулу ДНК, сосредоточенную в ограниченном пространстве цитоплазмы.


Молекула ДНК имеет типичное строение. Она состоит из двух полинуклеотидных цепей, образующих двойную спираль. В отличие от эукариот, ДНК имеет кольцевую структуру, а не линейную.

Молекулу ДНК бактерий отождествляют с одной хромосомой эукариот. Но если у эукариот в хромосомах ДНК связана с белками, то у бактерий ДНК комплексов с белками не образует.

ДНК бактерий закреплена на цитоплазматической мембране в области мезосомы.


Клетки многих бактерий имеют нехромосомные генетические элементы - плазмиды . Они представляют собой небольшие кольцевые молекулы ДНК, способные реплицироваться независимо от хромосомной ДНК. Среди них различают F -фактор - плазмиду, контролирующую половой процесс.

Жгутики. Среди бактерий имеется много подвижных форм. Основную роль в передвижении играют жгутики.

Жгутики бактерий только внешне похожи на жгутики эукариот, строение же их иное. Они имеют меньший диаметр и не окружены цитоплазматической мембраной. Нить жгутика состоит из 3-11 винтообразно скрученных фибрилл, образованных белком флагеллином.



У основания располагается крюк и парные диски, соединяющие нить с цитоплазматической мембраной и клеточной стенкой. Движутся жгутики, вращаясь в мембране. Число и расположение жгутиков на поверхности клетки может быть различно.

Фимбрии - это тонкие нитевидные структуры на поверхности бактериальных клеток, представляющие собой короткие прямые полые цилиндры, образованные белком пилином. Благодаря фимбриям, бактерии могут прикрепляться к субстрату или сцепляться друг с другом. Особые фимбрии - половые фимбрии , или F -пили - обеспечивают обмен генетического материала между клетками.


Физиология бактерий. Питание

Способы питания

Гетеротрофы

Автотрофы

Сапротрофы

Фотоавтотрофы

Хемоавтотрофы

Симбионты

Физиология бактерий. Питание

Питание бактерий.

Вместе с пищей бактерии, как и другие организмы, получают энергию для процессов жизнедеятельности и строительный материал для синтеза клеточных структур.

Среди бактерий различают:

гетеротрофов, потребляющих готовое органическое вещество. Они могут быть:

сапротрофами , то есть питаться мертвым органическом веществом;

Физиология бактерий. Питание

Другая группа, автотрофы , способна синтезировать органические вещества из неорганических. Среди них различают:

фотоавтотрофов, хемоавтотрофов

  • фотоавтотрофов, синтезирующих органические вещества за счет энергии света, и хемоавтотрофов , синтезирующих органические вещества за счет химической энергии окисления неорганических веществ: серы, сероводорода, аммиака и т.д. К ним относятся нитрифицирующие бактерии, железобактерии, водородные бактерии и т.д.

Фотоавтотрофы:

Фотосинтезирующие серобактерии (зеленые и пурпурные) Имеют фотосистему-1 и при фотосинтезе не выделяют кислород, донор водорода – Н 2 S:

6СО 2 + 12Н 2 S С 6 Н 12 О 6 + 12 S + 6Н 2 О

У цианобактерий (синезеленых) появилась фотосистема-2 и при фотосинтезе кислород выделяется, донором водорода для синтеза органики является Н 2 О:

6СО 2 + 12Н 2 О С 6 Н 12 О 6 + 6О 2 + 6Н 2 О


Физиология бактерий

Хемоавтотрофы :

Хемосинтетики окисляют аммиак (нитрифицирующие бактерии) сероводород, серу, водород и соединения железа. Источником водорода для восстановления углекислого газа является вода. Открыт в 1887 году С.Н.Виноградским.

Важнейшая группа хемосинтетиков – нитрифицирующие бактерии , способные окислять аммиак, образующийся при гниении органических остатков, сначала до азотистой, а затем до азотной кислоты:

2 NH 3 + 3O 2 = 2HNO 2 + 2H 2 O + 663 кДж

N О 2 + O 2 = 2HNO 3 + 142 кДж

Азотная кислота, реагируя с минеральными соединениями почвы, образует нитраты, которые хорошо усваиваются растениями.


Физиология бактерий

Хемоавтотрофы:

Бесцветные серобактерии окисляют сероводород и накапливают в своих клетках серу:

2 S + О 2 = 2Н 2 О + 2 S + 272 кДж

При недостатке сероводорода бактерии производят дальнейшее окисление серы до серной кислоты:

2 S + 3О 2 + 2Н 2 О = 2Н 2 S О 4 + 636 кДж

Железобактерии окисляют двувалентное железо до трехвалентного:

4 FeCO 3 + O 2 + H 2 O = 4Fe(OH) 3 + 4CO 2 + 324 кДж

Водородные бактерии используют энергию, выделяющуюся при окислении молекулярного водорода:

2 + О 2 = 2Н 2 О + 235 кДж


Физиология бактерий. Размножение

Бактерии способны к интенсивному размножению. Половое размножение у бактерий отсутствует, известно только бесполое размножение. Некоторые бактерии при благоприятных условиях способны делиться каждые 20 минут.

Бесполое размножение

Бесполое размножение является основным способом размножения бактерий. Оно может осуществляться путем бинарного деления и почкования.

Большинство бактерий размножается путем бинарного равновеликого поперечного деления клеток. При этом образуются две одинаковые дочерние клетки. Перед делением происходит репликация ДНК.

Почкование. Некоторые бактерии размножаются путем почкования. При этом на одном из полюсов материнской клетки образуется короткий вырост - гифа , на конце которого формируется почка, в нее переходит один из поделившихся нуклеоидов. Почка разрастается, превращаясь в дочернюю клетку, и отделяется от материнской в результате формирования перегородки между почкой и гифой.



Половой процесс, или генетическая рекомбинация.

Половое размножение отсутствует, но известен половой процесс. Гаметы у бактерий не образуются, слияния клеток нет, но происходит главнейшее событие полового процесса - обмен генетической информацией. Этот процесс называют генетической рекомбинацией . Часть ДНК (реже вся) клеткой-донором передает клетке-реципиенту и замещает часть ДНК клетки-реципиента. Образовавшуюся ДНК называют рекомбинантной . Она содержит гены обеих родительских клеток.

Различают три способа генетической рекомбинации: конъюгация, трансдукция, трансформация;

Конъюгация - это прямая передача участка ДНК от одной клетки другой во время непосредственного контакта клеток друг с другом. Клетка-донор образует называемых F-пилю, ее образование контролируется особой плазмидой - F-плазмидой . Во время конъюгации ДНК передается только в одном направлении (от донора к реципиенту), обратной передачи нет.


Трансдукция – перенос фрагментов ДНК от одной бактерии к другой с помощью бактериофагов.


Значение бактерий

Бактерии играют огромное значение и в биосфере, и в жизни человека. Бактерии принимают участие во многих биологических процессах, особенно в круговороте веществ в природе. Значение для биосферы:

Гнилостные бактерии разрушают азотсодержащие органические соединения неживых организмов, превращая их в перегной.

Минерализующие бактерии разлагают сложные органические соединения перегноя до простых неорганических веществ, делая их доступными для растений.

Многие бактерии могут фиксировать атмосферный азот. Причем, азотобактер , свободноживущий в почве, фиксирует азот независимо от растений, а клубеньковые бактерии проявляют свою активность только в симбиозе с корнями высших растений (преимущественно бобовых), благодаря этим бактериям почва обогащается азотом и повышается урожайность растений.


Значение бактерий

Симбиотические бактерии кишечника животных (прежде всего, травоядных) и человека обеспечивают усвоение клетчатки, образуют витамины (В 12 , К).

Существенную роль играют бактерии и в процессах почвообразования (разрушение минералов почвообразующих пород, образование гумуса).


Значение бактерий

Значение для человека:

  • Получение молочнокислых продуктов, для квашения капусты, силосования кормов;
  • Для получения органических кислот, спиртов, ацетона, ферментативных препаратов;

Значение бактерий

  • Активно используются в качестве продуцентов многих биологически активных веществ (антибиотиков, аминокислот, витаминов и др.), используемых в медицине, ветеринарии и животноводстве;
  • Благодаря методам генетической инженерии, с помощью бактерий получают такие необходимые вещества, как человеческий инсулин и интерферон;

Значение бактерий

  • Человек использует бактерии и для очистки сточных вод.
  • Отрицательную роль играют патогенные бактерии, вызывающие заболевания растений, животных и человека.
  • Многие бактерии вызывают порчу продуктов, выделяя при этом токсичные вещества.

Повторение:

Продолжите предложения:

  • Генетический материал у прокариот представлен (_).
  • Рибосомы прокариот отличаются от эукариотических (_).
  • Из одномембранных органоидов у прокариот отсутствуют: ЭПС? Комплекс Гольджи? Лизосомы? Вакуоли?
  • Из двумембранных органоидов у прокариот отсутствуют: Ядро? Митохондрии? Пластиды?
  • Размножаются прокариоты (_).
  • По отношению к кислороду бактерии делятся на (_).
  • Гетеротрофные организмы - (_).
  • Автотрофные организмы - (_).

МОУ «Новосергиевская средняя общеобразовательная школа №3»
Творческая работа
по биологии
Сравнительная характеристика
прокариотической и эукариотической клетки.
Работу выполнила: Васильева Мария,
ученица 11Б класса.
Для разнообразнейших элементарных частей организмов существует общий принцип строения и развития, и этим принципом является образование клеток. Т. Шванн
Новосергиевка 2006

В настоящие время все организмы делятся на два уровня клеточной организации: клетки, сохраняющие глубочайшие черты древности, строение которых очень простое; и клетки высокой организации, которые приспособлены к потреблению кислорода.

Прокариоты* - организмы, клетки, которые не имеют ограниченного мембраной ядра; к ним относя бактерии, включая архебактерии и цианобактерии (сине-зеленые водоросли). Обитают во всех сфера мирового океана.
Эукариоты* - надцарство одноклеточных и многоклеточных организмов, клетки которых имеют настоящее ядро, окруженное двойной мембраной, к ним относят: грибы, растения и животных. Обитают во всех сферах мирового океана.
Из словаря

СТРОЕНИЕ КЛЕТКИ
Прокариоты
Основная особенность строения прокариот – отсутствие ядра, ограниченного оболочкой. Наследственный аппарат прокариот представлен одной кольцевой молекулой ДНК, не образующей связей с белками и содержащей по одной копии каждого гена – гаплоидные организмы. В цитоплазме имеется большое количество мелких рибосом; отсутствуют или слабо выражены внутренние мембраны. Ферментные системы энергетического обмена упорядочено расположены на внутренней поверхности наружной цитоплазматической мембраны. Аппарат Гольджи представлен отдельными пузырьками. Размножение происходит делением клетки надвое. Многим прокариотам характерно спорообразование.

Типичной клетки не существует, но все эукариотические клетки гомологичны и у различных клеток можно найти общие черты строения. Каждая клетка состоит из двух важных частей: ядра и цитоплазмы, где находит целы ряд структур (органоидов).
СТРОЕНИЕ КЛЕТКИ
Эукариоты
Органоиды
Свойственные всем клеткам: митохондрии, клеточный центр, аппарат Гольджи, рибосомы, эндоплазматическая сеть, лизосомы.
Присущие только определенным типа
Растительные: клеточная стенка, плазмодесма, вакуоль, хлоропласт.
Животные: жировые включения, центриоли.

Процессы жизнедеятельности
Прокариоты делятся на фототрофов, для которых источником энергии служит солнечный свет, и хемотрофов, использующих для синтеза собственных органических соединений энергию реакций окисления или восстановления неорганических молекул.
Прокариоты поглощают пищу через клеточную мембрану, что называется адсорбция. В неблагоприятных условия прокариотам свойственно спорообразование, например: недостаток в питательных веществах; избыток накопившихся продуктов обмена; в состояние спор происходить распространение микроорганизмов при помощи ветра и другими способами.

Процессы жизнедеятельности
Эукариотической клетки каждый органоид отвечает за определенную функцию. За транспорт веществ и обеспечением жизнедеятельности клетки отвечает - Эндоплазматическая сеть; образует лизосомы, участвующие во внутриклеточном пищеварение, - комплекс Гольджи; синтез универсального источника энергии проходит в митохондриях. Главной частью клетки является ядро, выполняющие функции хранения и воспроизведения генетической информации и регуляции процессов обмена веществ, протекающих в клетке.