Разработка проекта численного моделирования технологического процесса. Автоматизация и моделирование технологического процесса

Автоматизация и моделирование технологического процесса

быть экономичным;

иметь малую массу;

обеспечивать простое согласование с нагрузкой.

По виду используемой силовой энергии различают приводы: электрический, пневматический, гидравлический механический, электромеханический, комбинированный.

В пневматических приводах используется энергия сжатого воздуха с давлением около 0,4 МПа, получаемого от цеховой пневмосети, через устройство подготовки воздуха.

1.2.1 Техническое задание на проектирование устройства

На стадии технического задания определяется оптимальное структурно-компоновочное решение и составляются технические требования к оснастке:

наименование и область применения – приспособление для установки ЭРЭ на печатную плату;

основание для разработки – задание на ККП;

цель и назначение оснастки – повысить уровень механизации и автоматизации технологической операции;

источники разработки – использование опыта внедрения средств технологического оснащения в отрасли;

технические требования:

количество ступеней подвижности не менее 5;

наибольшая грузоподъемность, Н 2,2;

статическое усилие в рабочей точке оснащения, Н не более 50;

наработка на отказ, ч, не менее 100;

абсолютная погрешность позиционирования, мм +0,1;

скорость движения с максимальной нагрузкой, м/с: - по свободной траектории не более 1; - по прямолинейной траектории не более 0,5;

Калибровка положения звеньев манипулятора.

На нижнем уровне управления решаются задачи обработки звеньями манипулятора заданных движений, которые формируются на верхнем уровне. Отработка программных положений осуществляется при заданных параметрах (скорость, ускорение) с помощью цифровых электромеханических модулей, которые приводят в движение звенья манипулятора. Система управления состоит с таких приборов: модуля центрального процессора (МЦП); ОЗУ; ПЗУ; модуля аналогового введения (МАВ), куда подаются сигналы от потенциометрических датчиков грубого вычислительного положения; модуля последовательного интерфейса (МПИ); модуля ввода-вывода (МВВ); модуля связи (МС).

Обмен информацией между модулями верхнего уровня выполняется с помощью системной магистрали.

Нижний уровень управления имеет:

Модули процессора привода (МПП);

Модули управления приводом (МУП).

Количество модулей МПП и МУП соответствует количеству звеньев манипулятора и равно 6. МПП соединяется с модулем связи с помощью системных магистралей. Управление электродвигателями звеньев манипулятора выполняется с помощью транзисторных широтно-импульсных преобразователей (ШИП), которые входят в состав блока питания (БП). МЦП выполнен на базе микропроцессора К1801 и имеет:

Однокристальный процессор;

Регистр начального запуска;

Системную ОЗУ, ёмкостью 3216 – разрядных слова; системную ПЗУ, ёмкостью 2х16 – разрядных слова;

Резидентную ПЗУ, ёмкостью 4х16 – разрядных слова;

Программируемый таймер.

Быстродействие МЦП характеризуется такими данными:

Суммирование при регистровом средстве адресации – 2.0 мкс;

Суммирование при посредственно-регистровом средстве адресации – 5.0 мкс;

Умножение с фиксированной запятой – 65 мкс.

Панель оператора предназначена для выполнения операций включения и отключение ПР, для выбора режимов его работы.

Основными элементами панели есть:

переключатель сетевого питания (СЕТЬ);

кнопка аварийного отключения (.АВАРИЯ). Сетевое питание выключается при нажатии кнопки. Возвращение кнопки в начальное положение осуществляется поворотом ее за часовой стрелкой;

кнопка включения питания системы управления (СК1);

кнопка отключения питания системы управления (СК0);

Кнопка включения питания привода (ПРИВОД 1). Нажимом кнопки
включается питание привода, одновременно с этим разблокируется электромагнитные тормоза двигателей;

Кнопка отключения питания приводов (ПРИВОД 0);

Переключатель выбора режима. Имеет три положения РОБОТА, ОСТАНОВКА, РЕСТАРТ. В режиме РОБОТА система работает нормально. В режиме ОСТАНОВКА выполнение программы остановится в конце поточного шага.

Переведение переключателя к режиму РОБОТА приведет к продолжению выполнения программы к началу следующего шага. Режим РЕСТАРТ используется для повторного запуска выполнения программы пользователя с первого ее шага;

Кнопка автоматического запуска (АВТОСТАРТ). Нажатие кнопки приводит к запуску системы так, что робот начинает выполнять программу без задачи команд из клавиатуры. Нажатие кнопки выполняется после включения питания СК. Активизация режима осуществляется после включения ПРИВОД 1.

Пульт ручного управления используется для позиционирования манипулятора при обучении и программировании. Пульт обеспечивает 5 режимов работы:

управление манипулятором от ЭВМ (СОМР);

ручное управление в основной системе координат (WORLD );

ручное управление за степенями подвижности (JOINT );

ручное управление в системе координат инструмента (ТООL );

Отключение приводов мер подвижности (FREE ).

Выбранный режим идентифицируется сигнальной лампочкой.

Скорость движения манипулятора регулируется с помощью кнопок «SPEED », «+», «-».Для сжатия и разжатия захватывающего устройства манипулятора используются кнопки «CLOSE » и «ОРЕN ».

Кнопка "S ТЕР" служит для записи координат точек при задаче траектории перемещения. Кнопка "ОСТАНОВ", расположенная на торце пульта ручного управления, предназначена для прерывания выполнения программы с отключением питания приводов. Используется для остановки движения в нормальной ситуации. Кнопка "ОFF " имеет аналогичное назначение, как и "ОСТАНОВ". Разность заключается в том, что питание приводов манипулятора не выключается.

Перемещение суставов манипулятора с помощью пульта ручного управления осуществляется в трех режимах: JOINT , WORLD и ТООL .

В режиме JOINT (выбирается соответствующей кнопкой на пульте управления) пользователь может руководить непосредственно перемещением отдельных звеньев манипулятора. Этим перемещением отвечают пары кнопок «-» и «+» соответственно каждому звену манипулятора (т.е. колона, плечо, локоть, и три движений захвата).

В режиме WORLD осуществляется фактически фиксация относительно основной системы координат и перемещение в отдельных направлениях этой системы (соответственно Х,Y ,Z ).

Следует отметить, что работа в режиме WORLD может осуществляться на малых скоростях, чтобы исключить попадание в границе руки пространства робота. Также укажем, что перемещение обеспечивается автоматически с помощью одновременно всех звеньев манипулятора.

Режим ТООL обеспечивает перемещение в активной системе координат.

12-разрядный строчный индикатор предназначен для вывода информации о режимах работы и ошибки:

-N ОКІА АОХ - высвечивается краткосрочное при запуске;

-ARM PWR OFF - питание приводов манипулятора отключено;

-MANUAL MODE - разрешено управления роботом из пульта управления;

СОМР МОD Е - манипулятор руководствуется от ЭВМ;

-L ІМІТ S ТОР - сустав перемещен к крайнему положению;

ТОО CLOSE - заданная точка находится весьма близко к манипулятору;

ТОО FAR - заданная точка находится вне рабочей зоны робота;

ТЕАСН МООЕ - активизирован режим ТЕАСН, манипулятор перемещается за произвольными траекториями;

-S ТЕАСН МОD Е - активизирован режим ТЕАСН-S , манипулятор перемещается за прямолинейными траекториями;

-ERROR - на пульте ручного управления одновременно нажаты кнопки, которые образовывают недопустимую операцию и т.п..

3 Технология и автоматизация производства РЭА: Учебник для вузов/Под ред. А.П.Достанко.-М.:Радио и связь, 2009.

4 Технология производства ЭВМ – Достанко А.П. и др.:Учеб.-Мн.:Высшая школа , 2004.

5 Технологічне оснащення виробництва електронних обчислювальних засобів: Навч. Посібник/М.С.Макурін.-Харків: ХТУРЕ,1996.

Автоматизация и моделирование технологического процесса


1 АВТОМАТИЗАЦИЯ ПРОЦЕССА

Автоматизация – направление развития производства, характеризуемое освобождением человека не только от мускульных усилий для выполнения тех или иных движений, но и от оперативного управления механизмами, выполняющими эти движения. Автоматизация может быть частичной и комплексной.

Комплексная автоматизация характеризуется автоматическим выполнением всех функций для осуществления производственного процесса без непосредственного вмешательства человека в работу оборудования. В обязанности человека входит настройка машины или группы машин, включение и контроль. Автоматизация – это высшая форма механизации, но вместе с этим это новая форма производства, а не простая замена ручного труда механическим.

С развитием автоматизации все более широкое применение находят промышленные роботы (ПР), заменяя человека (или помогая ему) на участках с опасными, вредными для здоровья, тяжелыми или монотонными условиям труда.

Промышленный робот – перепрограммируемый автоматический манипулятор промышленного применения. Характерными признаками ПР являются автоматическое управление; способность к быстрому и относительно легкому перепрограммированию, способность к выполнению трудовых действий.

Особенно важно то, что ПР можно применять для выполнения работ, которые не могут быть механизированы или автоматизированы традиционными средствами. Однако ПР – всего лишь одно из многих возможных средств автоматизации и упрощения производственных процессов. Они создают предпосылки для перехода к качественно новому уровню автоматизации – созданию автоматических производственных систем, работающих с минимальным участием человека.

Одно из основных преимуществ ПР – возможность быстрой переналадки для выполнения задач, различающихся последовательностью и характером манипуляционных действий. Поэтому применение ПР наиболее эффективно в условиях частой смены объектов производства, а также для автоматизации ручного низкоквалифицированного труда. Не менее важным является и обеспечение быстрой переналадки автоматических линий, а также комплектация и пуск их в сжатые сроки.

Промышленные роботы дают возможность автоматизировать не только основные, но и вспомогательные операции, чем и объясняется постоянно растущий интерес к ним.

Основные предпосылки расширения применения ПР следующие:

повышение качества продукции и объемов ее выпуска при неизменном числе работающих благодаря снижению времени выполнения операций и обеспечению постоянного режима «без усталости», росту коэффициента сменности работы оборудования, интенсификации существующих и стимулированию создания новых высокоскоростных процессов и оборудования;

изменение условий труда работающих путем освобождения от неквалифицированного, монотонного, тяжелого и вредного труда, улучшения условий безопасности, снижения потерь рабочего времени от производственного травматизма и профессионально-технических заболеваний;

экономия рабочей силы и высвобождение трудящихся для решения народнохозяйственных задач.


1.1 Построение и расчет схемы модели «жесткий вывод – отверстие печатной платы»

Существенным фактором в реализации сборочного процесса является обеспечение собираемости электронного модуля. Собираемость зависит в большинстве случаев от точности позиционирования и усилий, необходимых для сборки элементов конструкции модуля, конструктивно-технологических параметров сопрягаемых поверхностей.

В варианте, когда в отверстие платы вводится жесткий вывод, можно выделить следующие характерные виды контакта сопрягаемых элементов:

бесконтактный проход вывода через отверстие;

контакт нулевого вида, когда конец вывода касается образующей фаски отверстия;

контакт первого вида, когда конец вывода касается боковой поверхности отверстия;

контакт второго вида, когда боковая поверхность вывода касается кромки фаски отверстия;

контакт третьего вида, когда конец вывода касается боковой поверхности отверстия, а поверхность вывода – кромки фаски отверстия.

В качестве классификационных признаков выделения видов контактов приняты: изменение нормальной реакции в точке контакта; сила трения; форма упругой линии стержня.

На надежную работу установочной головки значительное влияние оказывают допуски отдельных элементов. В процессах позиционирования и перемещения возникает цепочка допусков, которая в неблагоприятных случаях может привести к ошибке при установке ЭРЭ, приводя к некачественной сборке.

Собираемость изделия зависит, таким образом, от трех факторов:

размерных и точностных параметров сопрягаемых поверхностей компонентов изделия;

размерных и точностных параметров сопрягаемых поверхностей базового элемента изделия;

размерных и точтностных параметров позиционирования исполнительного органа с расположенным в нем компонентом.


Рассмотрим случай контакта нулевого вида, схема которого изображена на рисунке 1.1.



Q


j

Рисунок 1.1 – Расчетная схема контакта нулевого вида.


Исходные данные:

F – сборочное усилие, направленное по ходу головки;

f – коэффициент трения;

Rг – реакция сборочной головки, перпендикулярная ее ходу;

N – нормальная к образующей фаски реакции;

Мг – изгибающий момент относительно сборочной головки;






Не только уменьшаться, например, за счет улучшения культуры производства и использования экологически более совершенного оборудования и технологий, но и увеличиваться, например, при введении новых технологических процессов, таких, как десульфуризация и денитрификация дымовых газов. Сточная вода - это вода, свойства которой изменены в результате бытовых, промышленных, сельскохозяйственных или...



К сложной формообразующей оснастке и инструменту. Еще одна важная задача ТПП - управление процессами ТПП. Автоматизация управления процессами ТПП позволяет обеспечить эффективное комплексное решение всех задач подготовки производства. Работы по технологической подготовке производства выполняются соответствующими подразделениями и службами предприятия. Как правило, наибольший объем работ и общее...


На одном или нескольких рабочих местах, удлинением поточных линий, применением механизированных групповых и типовых процессов. Пропорциональность производственных процессов должна восстанавливаться все время при последовательном их совершенствовании, связанном с повышением уровня механизации и автоматизации. При этом повышение пропорциональности должно достигаться на основе все более высокой...





БИОРЕАКТОРА Лист 90 Доклад. Уважаемые члены государственной экзаменационной комиссии разрешите представить вашему вниманию дипломный проект на тему: «Система автоматизированного управления процесса стерилизации биореактора» Процесс стерилизации биореактора (или ферментера) является важной стадией процесса биосинтеза антибиотика эритромицина. Суть процесса стерилизации состоит в...

В настоящее время, в условиях рыночных отношений, первоочередными, принципиальными задачами в сфере производства АПК являются интенсификация действующих производственных процессов, повышение качества про­дукции, экономия материалов и энергии и, в конечном итоге, повышение энер­гоэффективности технологических систем. Выявление резервов производства или конкретного процесса, как правило, связано с его анализом на основе совре­менных методов исследования и современных технических средств (в ча­стно­сти с использованием пакета программ МАТСАD). При этом, особое вни­мание уделяется моделям технологических процессов и способам их построе­ния.

Моделирование технологических процессов

При решении ряда задач, связанных с проектированием, подготовкой и функционированием технологических процессов а АПК прибегают к их моде­лированию, т. е. к изучению отдельных сторон, характеристик, свойств ТП не на реальном объекте, а на его модели. Под моделью понимают такую мысленно представленную или материально реализованную систему, которая, отображая объект исследования, способна воспроизводить с той или иной точностью его функции и замещать его на определенном этапе исследования.

Таким об­разом, модель - это некоторая система, сохраняющая суще­ственные свойства оригинала и допускающая исследование определенных свойств по­следнего физическими или математическими методами. Иными словами, модель - это отображение, описание технологического объекта (про­цесса или оборудования) с помощью некоторого языка, разработанное для дос­тижения определенной цели. К настоящему времени разработана общая теория модели­рования сложных систем, которая указывает на возможность использо­вания различных видов моделей для описания технических и технологических объек­тов.

Модель играет активную роль в исследовании ТП: с ее помощью можно с минимальными затратами и в сжатые сроки определять различные характеристики ТП, такие как затраты энергии, расход сырья и выход готового продукта, показатели качества этого продукта, количество отходов, бракованных изделий, конструктивные параметры элементов оборудования. Можно наметить и апро­бировать эффективную стратегию управления технологией, произвести проце­дуру оптимизации и т. д.

Целесообразность моделирования ТП определяется двумя основными условиями:

Исследование на модели дешевле, проще, безопаснее, быстрее, чем на объекте-оригинале;

Известно правило пересчета характеристик и параметров модели в соответствующие величины оригинала, т. к. в противном случае моделирование те­ряет смысл.

Цель, поставленная при разработке модели, определяет ее вид, информативность и степень соответствия реальному объекту, т. е. при формулировке цели необходимо тщательно отобрать те существенные свойства, которые в полной мере характеризуют рассматриваемый объект, определить требуемую степень соответствия модели реальному объекту (точность модели). Это позво­ляет в ряде случаев упростить модель, устранить из рассмотрения малозначи­мые, несущественные взаимосвязи между величинами, снизить затраты на мо­делирование.

При описании технологических процессов чаще используются натурное, физическое и математическое моделирование.

Натурное моделирование предполагает проведение экспериментального исследования реального технологического объекта и последующую обработку результатов с применением теории подобия, регрессионного анализа, таблиц соответствия. Это позволяет получить качественные или количественные зависимости, описывающие с той или иной точностью функционирование объекта. Однако эмпирические зависимости, основанные на представлении процесса в виде «черного ящика», хотя и позволяют решить частные технологические за­дачи, обладают существенными недостатками:

Эмпирические зависимости нельзя распространять на весь возможный диапазон изменения параметров режима - они справедливы лишь при тех усло­виях и ограничениях, при которых проводился натурный эксперимент;

Такие зависимости отображают прошлый опыт, поэтому на их основе не всегда возможно выявить и обосновать пути повышения эффективности соответствующих технологий.

В ряде случаев эмпирические зависимости носят качественный характер, т. е. устанавливают лишь характер влияния одних величин на другие, без установления количественных закономерностей.

Физическое моделирование также предполагает проведение эксперимен­тальных исследований с последующей обработкой результатов. Однако такие исследования проводятся не на реальном технологическом объекте, а на специ­альных лабораторных установках, которые сохраняют природу явлений и обла­дают физическим подобием. Таким образом, физическое моделирование осно­вано на подобии процессов одной природы, протекающих в объекте-оригинале и в физической модели, и заключается в следующем:

Устанавливают основные, подлежащие численному определению параметры технологического процесса, характеризующие его качество;

Рассчитывают и изготавливают одну или несколько физических моделей в виде лабораторных или полупроизводственных (опытных, пилотных) установок. Расчет этих установок производят на основе теории подобия, что гаранти­рует возможность переноса результатов на реальный объект;

В результате эксперимента на модели получают численные значения и взаимосвязи выделенных параметров и пересчитывают их для оригинала.

При физическом моделировании удается получить обширную информацию об отдельных процессах, определяющих структуру данной технологии.

Аналоговое моделирование связано с подобием процессов различной при­роды и основано на том факте, что для различных физических явлений сущест­вуют одинаковые закономерности их описания. Аналогичными считаются объ­екты или процессы, описываемые одинаковыми по форме уравнениями. В каче­стве примера можно привести уравнения Фурье (8.2.6) и Фика (8.2.9). Несмотря на различие входящих в них физических величин, все операторы совпадают и следуют в одной и той же последовательности. Следовательно, изучая один процесс, мы получим зависимости, справедливые (с точ­ностью до обозначений) для другого. Для аналогового моделирования исполь­зуют как эксперименталь­ные методы, так и аналоговые вычислительные ма­шины.

Аналитическое моделирование дает наиболее мощный инструмент для их исследования и предполагает получение и исследование различных математи­ческих моделей. Так, структурные модели используются для общего или пред­варительного описания объекта и позволяют выявить и определить его эле­менты, их свойства и взаимосвязи между элементами и свойствами элементов. Обычно для построения структурной модели используют аппарат теории мно­жеств. Классификационные модели позволяют упорядочить исследуемые объ­екты, выделить в них общие признаки и ранжировать по этим признакам. Такие модели необходимы при построении систем автоматизации управления, созда­нии банков данных и разработке систем автоматизированного проектирования, информационно-поисковых систем и в ряде других случаев. Познавательные модели используются для количественного описания закономерностей проте­кания различных процессов или функционирования оборудования. Они уста­навливают взаимосвязи, соотношения между величинами, характеризующими процесс или Лабораторное оборудование.

Познавательная модель описывает, как правило, физико-химический механизм процесса и может не содержать технологические параметры или характе­ристики объекта.

Между частными моделями, описывающими отдельные процессы или иные структурные составляющие изучаемого объекта, существуют взаимосвязи. Учет таких взаимосвязей, т. е. совместное решение уравнений, описывающих отдельные единичные процессы, приводит к построению обобщенной модели метода или способа обработки.

Технологические модели отличаются от познавательных тем, что целью их построения является нахождение количественных взаимосвязей между параметрами режима, условиями функционирования - входами технологической системы и показателями ее технического уровня, т. е. выходами системы. По­строение технологических моделей всегда связано с оценкой уровня качества и повышением эффективности функционирования технологических систем. Обычно технологические модели строятся на основе математических моделей отдельных процессов или на основе обобщенной модели объекта. Однако в ряде случаев полное аналитическое описание объекта невозможно, и при по­строении технологических моделей используют некоторые эмпирические зави­симости. Как правило, технологические модели строят для изучения отдельных сторон функционирования технологической системы, т. е. они носят частный характер.

Для большинства технологических процессов в связи с их сложностью построение единой обобщенной модели, адекватно описывающей все стороны и особенности их протекания, затруднено или невозможно. Поэтому при модели­ровании ТП используют принцип декомпозиции и решения локальных задач, позволяющий выделять и моделировать отдельные стороны, свойства ТП. В ре­зультате такого подхода ТП представляется совокупностью моделей, описы­вающих отдельные закономерности его функционирования и предназначенных для решения определенного круга задач. Такое представление естественно вы­текает из системного анализа, описанного выше. Иерархичность технологии порождает иерархичность моделей (модели ТП, ТО, ТМ), многомерность тех­нологий - разнообразие моделей (модели физико-химических процессов, тех­нологий, оборудования).

Пример. В качестве примера многообразия моделей рассмотрим технологию элек­трохими­ческой размерной обработки (ЭХРО). Модели, используемые при ис­следовании и описании такой технологии, показаны на рис. 8.2.35.

К числу частных познавательных моделей в данном случае относятся сле­дующие:

    кинематическая (описание кинематики взаимного перемещения электро­дов);

    гидравлическая (описание движения жидкости в узком межэлектродном канале);

    электрическая (описание электрического поля в межэлектродном проме­жутке);

    тепловая (описание поля температур);

    электрохимическая (описание электродных процессов и процессов пере­носа в электро­химической системе);

    химическая (описание химических стадий суммарного электродного про­цесса, химиче­ских превращений вещества в растворе).

К технологическим моделям относятся модель формообразования (описание движения границы анода при электрохимическом растворении его поверхно­сти), модель электрода-ин­струмента и ряд других.

Рис. 8.2.35. Виды моделей для описания процессов электрохимической обра­ботки материа­лов

В основе моделирования лежат основные представления теории подобия, в соответствии с которой явления, процессы называются подобными, если данные, полученные при изучении одного из них, можно распространить на дру­гие. Для подобных явлений необходимо постоянство отношений некоторых ве­личин, характеризующих процесс, или сочетаний таких величин, называемых критериями подобия [табл. П1,2,3]. Так, например, при изучении течения жидких сред широко используется критерий Рейнольдса:

,

где v - cкорость потока жидкости, м/с; d - гидравлический диаметр потока, м; ν - кинематическая вязкость среды, м 2 /с. Число Рейнольдса - безразмер­ная величина, от значения которой зависит характер движения жидкости, рас­пределение скоростей течения по сечению канала и другие параметры потока.

Основная (третья) теорема подобия гласит, что для подобия явлений необходимо и достаточно, чтобы их условия однозначности были подобны. Это означает, что должны соблюдаться геометрическое подобие, подобие физических констант, начальных и граничных условий, а критерии подобия, составленные из величин, входящих в условия однозначности, были бы одинаковы. Следова­тельно, все подобные явления отличаются друг от друга только масштабами характерных величин. Таким образом, если явления или процессы подобны, то закономерности, полученные при изучении одних из них, можно переносить на другие, а модельные результаты пересчитать с учетом масштабных факторов.

Суммируя сказанное, можно заключить, что основное требование к модели состоит в ее соответствии моделируемому объекту. Степень соответствия модели тому реальному явлению, которое она описывает, называют адекватностью модели. Доказательство адекватности - один из основных этапов по­строения любой модели. Для количественной оценки адекватности используют понятие «точность модели». Каждая модель должна сопровождаться информа­цией о ее точности для надежного использования результатов моделирования.

Точность детерминированных величин определяется отклонением результата моделирования х* от соответствующей ему реальной величины х, а точ­ность стохастических моделей оценивают вероятностными характеристиками.

Для обеспечения адекватности модели на этапе ее построения рекомендованы следующие правила:

    выбирают рациональную последовательность построения модели;

    используют итеративный процесс построения модели, т. е. многоэтапную процедуру ее разработки с оценкой промежуточных результатов, анализом их точности и коррекцией модели предыдущего этапа;

    уточняют модели на основе имеющихся экспериментальных данных;

    уточняют модели на основе получения экспертных оценок, результатов функционирования объекта и прочих дополнительных данных.

Усложнение технологических процессов в АПК, увеличение числа параметров, значимых при построении моделей, ужесточение сроков моделирования, ограничение материальных средств, выделяемых на эти цели, - все эти фак­торы затрудняют, а в некоторых случаях исключают предметное моделирова­ние. Поэтому на первый план выдвигается математическое моделирование ТП с использованием современных компьютерных технологий

Математическим моделированием ТП называют исследование, осуще­ствляемое путем решения системы математических соотношений, описываю­щих ТП, и имеющее три этапа:

    составление математического описания процесса или его элемента;

    выбор метода решения системы уравнений математического описания и реализация его в виде алгоритма, программы для получения количественных величин или соотношений;

    установление адекватности модели оригиналу.

При построении математических моделей реальный процесс упрощается, схе­матизируется, и полученная схема в зависимости от ее сложности описывается тем или иным математическим аппаратом. В конкретном случае математи­че­ское описание представляется в виде системы алгебраических, дифференци­аль­ных, интегральных уравнений или их совокупности.

С точки зрения анализа математической модели целесообразно выделить три ее стороны:

    смысловой аспект отражает физическое описание моделируемого объекта;

    аналитический аспект представляет собой систему уравнений, описываю­щих происходящие процессы и взаимосвязи между ними;

    вычислительный - метод и алгоритм решения, реализованные в виде про­граммы на одном из языков программирования.

В последнее время для исследования сложных систем, в том числе технологи­ческих процессов, все большее применение находит имитационное моделиро­вание, в основе которого лежит машинный эксперимент. Для реализации мате­матической модели строится моделирующий алгоритм, воспроизводя­щий процесс функционирования системы во времени. Путем изменения вход­ных данных получают сведения о состояниях процесса в заданные моменты времени, по которым оценивают характеристики объекта. Таким образом, при имитационном моделировании имеют дело с моделями, по которым нельзя за­ранее рассчитать или предсказать результат.

Пример. Рассмотрим в качестве примера моделирование процесса электрохимической анодной обработки материала, описанного ранее (рис. 8.2.15, б). Эта техноло­гия получила распространение при изготовлении пространственно сложных из­делий в энеретике, таких как лопатки турбин и компрессоров. С технологиче­ской точки зрения необходимо уметь рассчитывать время t, необходимое для снятия слоя металла толщиной z (машинное время обра­ботки), или же величину слоя металла (припуска) zп, снятого за время t. Для получения рас­четных зави­симостей воспользуемся частной моделью плоскопараллельного межэлектрод­ного промежутка (МЭП), смысловой аспект которой ясен из рис. 8.2.36, а. Как видно, элек­трод-инструмент (ЭИ) движется поступательно со скоростью vи, а на поверхности анода (А) формируется эпюр локальных скоростей электрохи­мического растворения vэ, межэлектрод­ный промежуток заполнен электроли­том, а между электродами приложено напряжение U.

Сделаем некоторые допущения, упрощающие модель. Пусть скорость электрохимического растворения одинакова для всех точек анодной поверхности и свойства электролита также одинаковы для всех точек МЭП. Тогда для описа­ния процесса можно воспользоваться законами Ома и Фарадея:

где U - напряжение на электродах; i - плотность тока; а - текущий межэ­лектродный зазор; χ - удельная электропроводность электролита; с - элек­трохимический эквивалент ме­талла; η - выход по току реакции растворения металла; ρ - плотность обрабатываемого металла.

Из расчетной схемы следует, что da/dt = vэ - vи, поскольку растворение по­верхности компенсируется смещением ЭИ в сторону заготовки. Отсюда полу­чаем дифференциальное уравнение, описывающее изменение МЭП во времени:

(8.2.26)

при начальном условии t= 0; a = a0.

Анализ модели значительно упрощается, если принять A = const. Такое до­пущение корректно для многих практически важных задач. Рассмотрим два случая, реализуемые в боль­шинстве схем электрохимического формообразова­ния: vи= 0 (случай неподвижного ЭИ) и vи = const (движение ЭИ с постоянной скоростью). Интегрируя приведенное выше дифферен­циальное уравнение, по­лучаем для первого случая:

(8.2.27)

а для второго:

Преобразуя полученные выражения, можно получить зависимости времени от величины МЭП.

Несмотря на упрощенный характер предложенной модели, она успешно ис­пользуется в технологических расчетах и во многих случаях хорошо описывает экспериментальные данные.

Однако в тех случаях, когда отношение длины межэлектродного за­зора к его ширине
достаточно велико (в реальных процессах k достигает значений 200–1000), свой­ства электролита по длине МЭП сильно изменяются из-за сопутствующего выделения тепла и газа, и сделанные выше допущения неприемлемы.

Необходимо строить модели, в которых учитываются зависимости пара­метров процесса от координаты гидравлического тракта и времени.

Для получения подобных зависимостей широко используется физическое моделирование. На рис. 8.2.36, б приведена физическая модель длинномерного МЭП, позволяющая получать распределения плотности тока, температуры электролита, газосодержания, эффек­тивной электропроводности межэлектрод­ной среды, локальной скорости съема металла и других параметров по длине МЭП прямым экспериментом.

Насос 1 прокачивает электролит через гидравли­ческий тракт, образованный плоскопараллельными электродами 2 и 3, встроен­ными в диэлектрические плиты 4. Величина межэлек­тродного зазора определя­ется толщиной сменной прокладки 5 и изменяется в пределах 0,2-2 мм. Варь­ируемыми параметрами режима электролиза являются: величина зазора, на­пряже­ние на электродах, входное давление электролита, его состав, начальная температура, ско­рость подачи катода на анод, длина МЭП, материал электро­дов. Газовыделение, профиль скоростей течения электролита изучались с по­мощью скоростной киносъемки процесса, для получения распределения ло­кальных плотностей тока по длине МЭП использовался секци­онный анод, рас­пределения давления и температуры фиксировались тензодатчиками давле­ния и термопарами, специальными зондами измерялись электродные потенциалы в различ­ных сечениях МЭП. Изменение съема металла по длине канала фиксиро­валось прямыми из­мерениями.

Анализ показывает наличие соответствия между представленной физиче­ской моделью и оригиналом: соблюдается геометрическое, гидравлическое, электрическое подобие, подобие физических констант, начальных и граничных условий. Поэтому полученные экспе­риментальные данные позволили не только уточнить математическую модель, но и получить технологические результаты, пригодные для непосредственного использования в производ­ственных усло­виях.

Рис. 8.2.36. Схема к построению математической модели (а) и установка для физического моделирования процесса ЭХРО в узком длинномерном зазоре (б)

Таким образом, приведенный пример показывает, что различные виды мо­делей дополняют и уточняют друг друга, давая в совокупности надежные дан­ные для практического ис­пользования. К настоящему времени трудно найти та­кие области, в которых отсутствовал бы развитый аппарат математического моделирования основных процессов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Автоматизация и моделирование технологического процесса

1 АВТОМАТИЗАЦИЯ ПРОЦЕССА

Автоматизация - направление развития производства, характеризуемое освобождением человека не только от мускульных усилий для выполнения тех или иных движений, но и от оперативного управления механизмами, выполняющими эти движения. Автоматизация может быть частичной и комплексной.

Комплексная автоматизация характеризуется автоматическим выполнением всех функций для осуществления производственного процесса без непосредственного вмешательства человека в работу оборудования. В обязанности человека входит настройка машины или группы машин, включение и контроль. Автоматизация - это высшая форма механизации, но вместе с этим это новая форма производства, а не простая замена ручного труда механическим.

С развитием автоматизации все более широкое применение находят промышленные роботы (ПР), заменяя человека (или помогая ему) на участках с опасными, вредными для здоровья, тяжелыми или монотонными условиям труда.

Промышленный робот - перепрограммируемый автоматический манипулятор промышленного применения. Характерными признаками ПР являются автоматическое управление; способность к быстрому и относительно легкому перепрограммированию, способность к выполнению трудовых действий.

Особенно важно то, что ПР можно применять для выполнения работ, которые не могут быть механизированы или автоматизированы традиционными средствами. Однако ПР - всего лишь одно из многих возможных средств автоматизации и упрощения производственных процессов. Они создают предпосылки для перехода к качественно новому уровню автоматизации - созданию автоматических производственных систем, работающих с минимальным участием человека.

Одно из основных преимуществ ПР - возможность быстрой переналадки для выполнения задач, различающихся последовательностью и характером манипуляционных действий. Поэтому применение ПР наиболее эффективно в условиях частой смены объектов производства, а также для автоматизации ручного низкоквалифицированного труда. Не менее важным является и обеспечение быстрой переналадки автоматических линий, а также комплектация и пуск их в сжатые сроки.

Промышленные роботы дают возможность автоматизировать не только основные, но и вспомогательные операции, чем и объясняется постоянно растущий интерес к ним.

Основные предпосылки расширения применения ПР следующие:

повышение качества продукции и объемов ее выпуска при неизменном числе работающих благодаря снижению времени выполнения операций и обеспечению постоянного режима «без усталости», росту коэффициента сменности работы оборудования, интенсификации существующих и стимулированию создания новых высокоскоростных процессов и оборудования;

изменение условий труда работающих путем освобождения от неквалифицированного, монотонного, тяжелого и вредного труда, улучшения условий безопасности, снижения потерь рабочего времени от производственного травматизма и профессионально-технических заболеваний;

экономия рабочей силы и высвобождение трудящихся для решения народнохозяйственных задач.

1.1 Построение и расчет схемы модели «жесткий вывод - отверстие печатной платы»

Существенным фактором в реализации сборочного процесса является обеспечение собираемости электронного модуля. Собираемость зависит в большинстве случаев от точности позиционирования и усилий, необходимых для сборки элементов конструкции модуля, конструктивно-технологических параметров сопрягаемых поверхностей.

В варианте, когда в отверстие платы вводится жесткий вывод, можно выделить следующие характерные виды контакта сопрягаемых элементов:

бесконтактный проход вывода через отверстие;

контакт нулевого вида, когда конец вывода касается образующей фаски отверстия;

контакт первого вида, когда конец вывода касается боковой поверхности отверстия;

контакт второго вида, когда боковая поверхность вывода касается кромки фаски отверстия;

контакт третьего вида, когда конец вывода касается боковой поверхности отверстия, а поверхность вывода - кромки фаски отверстия.

В качестве классификационных признаков выделения видов контактов приняты: изменение нормальной реакции в точке контакта; сила трения; форма упругой линии стержня.

На надежную работу установочной головки значительное влияние оказывают допуски отдельных элементов. В процессах позиционирования и перемещения возникает цепочка допусков, которая в неблагоприятных случаях может привести к ошибке при установке ЭРЭ, приводя к некачественной сборке.

Собираемость изделия зависит, таким образом, от трех факторов:

размерных и точностных параметров сопрягаемых поверхностей компонентов изделия;

размерных и точностных параметров сопрягаемых поверхностей базового элемента изделия;

размерных и точтностных параметров позиционирования исполнительного органа с расположенным в нем компонентом.

Рассмотрим случай контакта нулевого вида, схема которого изображена на рисунке 1.1.

M г

R г

R F l

Q

Рисунок 1.1 - Расчетная схема контакта нулевого вида.

Исходные данные:

F - сборочное усилие, направленное по ходу головки;

F = 23 Н;

f - коэффициент трения;

f = 0,12;

l = 8 мм;

= 45;

Q =30.

Rг - реакция сборочной головки, перпендикулярная ее ходу;

N - нормальная к образующей фаски реакции;

.

Мг - изгибающий момент относительно сборочной головки;

1.2 Конструирование захватного устройства

Захватные устройства (ЗУ) промышленных роботов служат для захватывания и удержания в определенном положении объектов манипулирования. При конструировании захватных устройств учитывают форму и свойства захватываемого объекта, условия протекания технологического процесса и особенности применяемой технологической оснастки, чем и обусловлено многообразие существующих захватных органов ПР. наиболее важными критериями при оценке выбора захватных органов являются приспосабливаемость к форме захватываемого объекта, точность захвата и сила захвата.

В классификации захватных устройств ЗУ в качестве классификационных выбраны признаки, характеризующие объект захвата, процесс захвата и удержания объекта, обслуживаемый технологический процесс, а также признаки, отражающие структурно-функциональную характеристику и конструктивную базу ЗУ.

К факторам, связанным с объектом захвата, относятся форма объекта, его масса, механические свойства, соотношение размеров, физико-механические свойства материалов объекта, а также состояние поверхности. Масса объекта определяет требуемое усилие захвата, т.е. грузоподъемность ПР, и позволяет выбрать тип привода и конструктивную базу ЗУ; состояние поверхности объекта предопределяет материал губок, которыми должно быть снабжено ЗУ; форма объекта и соотношение его размеров также влияют на выбор конструкции ЗУ.

Свойства материала объекта влияют на выбор способа захвата объекта, необходимую степень очувствления ЗУ, возможности переориентирования объектов в процессе их захвата и транспортирования к технологической позиции. В частности, для объекта с высокой степенью шероховатости поверхности, но нежесткими механическими свойствами, возможно применение только «мягкого» зажимного элемента, оснащенного датчиками определения усилия зажима.

Разнообразие ЗУ, пригодных для решения сходных задач, и большое число признаков, характеризующих их различные конструктивно-технологические особенности, не позволяют построить классификацию по чисто иерархическому принципу. Различают ЗУ по принципу действия: схватывающие, поддерживающие, удерживающие, способные к перебазированию объекта, центрирующие, базирующие, фиксирующие.

По виду управления ЗУ подразделяют на: неуправляемые, командные, жесткопрограммируемые, адаптивные.

По характеру крепления к руке ПР все ЗУ делят на: несменяемые, сменные, быстросменные, пригодные для автоматической смены.

Все захватные устройства приводятся в действие специальным устройством - приводом.

Привод - это система (электрическая, электромеханическая, электропневматическая и др.), предназначенная для приведения в движение исполнительных механизмов автоматизированных технологических и производственных машин.

Основные функции привода: усилие (мощность, крутящий момент), скорость (набор скоростей, диапазон скоростей); способность сохранять заданную скорость (усилие, крутящий момент) в условиях изменения нагрузки; быстродействие, конструктивная сложность; экономичность, стоимость, габариты, масса.

Основные требования, предъявляемые к приводам. Привод должен:

1) соответствовать по всем основным характеристикам заданному ТЗ;

2) позволять электрическое дистанционное автоматическое управление;

3) быть экономичным;

4) иметь малую массу;

5) обеспечивать простое согласование с нагрузкой.

По виду используемой силовой энергии различают приводы: электрический, пневматический, гидравлический механический, электромеханический, комбинированный.

В пневматических приводах используется энергия сжатого воздуха с давлением около 0,4 МПа, получаемого от цеховой пневмосети, через устройство подготовки воздуха.

1.2.1 Техническое задание на проектирование устройства

На стадии технического задания определяется оптимальное структурно-компоновочное решение и составляются технические требования к оснастке:

1) наименование и область применения - приспособление для установки ЭРЭ на печатную плату;

2) основание для разработки - задание на ККП;

3) цель и назначение оснастки - повысить уровень механизации и автоматизации технологической операции;

4) источники разработки - использование опыта внедрения средств технологического оснащения в отрасли;

5) технические требования:

a) количество ступеней подвижности не менее 5;

b) наибольшая грузоподъемность, Н 2,2;

c) статическое усилие в рабочей точке оснащения, Н не более 50;

d) наработка на отказ, ч, не менее 100;

e) абсолютная погрешность позиционирования, мм +0,1;

f) скорость движения с максимальной нагрузкой, м/с: - по свободной траектории не более 1; - по прямолинейной траектории не более 0,5;

g) рабочее пространство без оснащения сферическое с радиусом 0,92;

h) привод захватывающего устройства пневматический;

6) требования техники безопасности ГОСТ 12.1.017-88;

7) срок окупаемости 1 год.

1.2.2 Описание конструкции и принцип работы промышленного робота РМ-01

Промышленный робот (ПР) РМ-01 используется для выполнения разнообразных операций складывания, монтажа, сортировки, упаковки, загрузки - разгрузки, дуговой сварки и т.д. Общий вид робота представлен на рисунке 1.2.

Рисунок 1.2 - Промышленный робот РМ-01

Манипулятор робота имеет шесть ступеней подвижности. Звенья манипулятора соединяются одна с одной с помощью суставов, которые имитируют локтевой или плечевой сустав человека. Каждое звено манипулятора приводится в действие индивидуальным электродвигателем постоянного тока через редуктор.

Электродвигатели оснащены электромагнитными тормозами, что позволяет надежно затормозить звенья манипулятора при отключении питания. Этим обеспечивается безопасность обслуживания робота, а также возможность перемещения его звеньев в ручном режиме. ПР РМ-01 имеет позиционно-контурную систему управления, которая реализована микропроцессорной системой управления «СФЕРА-36», построенная за иерархическим принципом.

«СФЕРА-36» имеет два уровня управления: верхний и нижний. На верхнем уровне решаются такие задачи:

Расчет алгоритмов планирования траектории движения захвата манипулятора и подготовка программ движения каждого его звена;

Логическая обработка информации о состоянии устройства, из которых состоит роботехнический комплекс, и соглашение работы в составе РТК;

Обмен информацией с ЭВМ более высокого уровня;

Диалоговый режим работы оператора с помощью видеотерминала и клавиатуры;

Чтение-запись, долгосрочное сохранение программ с помощью НГМД;

Ручной режим управления манипулятором с помощью пульта ручного управления;

Диагностика работы системы управления;

Калибровка положения звеньев манипулятора.

На нижнем уровне управления решаются задачи обработки звеньями манипулятора заданных движений, которые формируются на верхнем уровне. Отработка программных положений осуществляется при заданных параметрах (скорость, ускорение) с помощью цифровых электромеханических модулей, которые приводят в движение звенья манипулятора. Система управления состоит с таких приборов: модуля центрального процессора (МЦП); ОЗУ; ПЗУ; модуля аналогового введения (МАВ), куда подаются сигналы от потенциометрических датчиков грубого вычислительного положения; модуля последовательного интерфейса (МПИ); модуля ввода-вывода (МВВ); модуля связи (МС).

Обмен информацией между модулями верхнего уровня выполняется с помощью системной магистрали.

Нижний уровень управления имеет:

Модули процессора привода (МПП);

Модули управления приводом (МУП).

Количество модулей МПП и МУП соответствует количеству звеньев манипулятора и равно 6. МПП соединяется с модулем связи с помощью системных магистралей. Управление электродвигателями звеньев манипулятора выполняется с помощью транзисторных широтно-импульсных преобразователей (ШИП), которые входят в состав блока питания (БП). МЦП выполнен на базе микропроцессора К1801 и имеет:

Однокристальный процессор;

Регистр начального запуска;

Системную ОЗУ, ёмкостью 3216 - разрядных слова; системную ПЗУ, ёмкостью 2х16 - разрядных слова;

Резидентную ПЗУ, ёмкостью 4х16 - разрядных слова;

Программируемый таймер.

Быстродействие МЦП характеризуется такими данными:

Суммирование при регистровом средстве адресации - 2.0 мкс;

Суммирование при посредственно-регистровом средстве адресации - 5.0 мкс;

Умножение с фиксированной запятой - 65 мкс.

Панель оператора предназначена для выполнения операций включения и отключение ПР, для выбора режимов его работы.

Основными элементами панели есть:

переключатель сетевого питания (СЕТЬ);

кнопка аварийного отключения (.АВАРИЯ). Сетевое питание выключается при нажатии кнопки. Возвращение кнопки в начальное положение осуществляется поворотом ее за часовой стрелкой;

кнопка включения питания системы управления (СК1);

кнопка отключения питания системы управления (СК0);

Кнопка включения питания привода (ПРИВОД 1). Нажимом кнопки
включается питание привода, одновременно с этим разблокируется электромагнитные тормоза двигателей;

Кнопка отключения питания приводов (ПРИВОД 0);

Переключатель выбора режима. Имеет три положения РОБОТА, ОСТАНОВКА, РЕСТАРТ. В режиме РОБОТА система работает нормально. В режиме ОСТАНОВКА выполнение программы остановится в конце поточного шага.

Переведение переключателя к режиму РОБОТА приведет к продолжению выполнения программы к началу следующего шага. Режим РЕСТАРТ используется для повторного запуска выполнения программы пользователя с первого ее шага;

Кнопка автоматического запуска (АВТОСТАРТ). Нажатие кнопки приводит к запуску системы так, что робот начинает выполнять программу без задачи команд из клавиатуры. Нажатие кнопки выполняется после включения питания СК. Активизация режима осуществляется после включения ПРИВОД 1.

Пульт ручного управления используется для позиционирования манипулятора при обучении и программировании. Пульт обеспечивает 5 режимов работы:

управление манипулятором от ЭВМ (СОМР);

ручное управление в основной системе координат (WORLD);

ручное управление за степенями подвижности (JOINT);

ручное управление в системе координат инструмента (ТООL);

Отключение приводов мер подвижности (FREE).

Выбранный режим идентифицируется сигнальной лампочкой.

Скорость движения манипулятора регулируется с помощью кнопок «SPEED», «+», «-».Для сжатия и разжатия захватывающего устройства манипулятора используются кнопки «CLOSE» и «ОРЕN».

Кнопка "SТЕР" служит для записи координат точек при задаче траектории перемещения. Кнопка "ОСТАНОВ", расположенная на торце пульта ручного управления, предназначена для прерывания выполнения программы с отключением питания приводов. Используется для остановки движения в нормальной ситуации. Кнопка "ОFF" имеет аналогичное назначение, как и "ОСТАНОВ". Разность заключается в том, что питание приводов манипулятора не выключается.

Перемещение суставов манипулятора с помощью пульта ручного управления осуществляется в трех режимах: JOINT, WORLD и ТООL.

В режиме JOINT (выбирается соответствующей кнопкой на пульте управления) пользователь может руководить непосредственно перемещением отдельных звеньев манипулятора. Этим перемещением отвечают пары кнопок «-» и «+» соответственно каждому звену манипулятора (т.е. колона, плечо, локоть, и три движений захвата).

В режиме WORLD осуществляется фактически фиксация относительно основной системы координат и перемещение в отдельных направлениях этой системы (соответственно Х,Y,Z).

Следует отметить, что работа в режиме WORLD может осуществляться на малых скоростях, чтобы исключить попадание в границе руки пространства робота. Также укажем, что перемещение обеспечивается автоматически с помощью одновременно всех звеньев манипулятора.

Режим ТООL обеспечивает перемещение в активной системе координат.

12-разрядный строчный индикатор предназначен для вывода информации о режимах работы и ошибки:

NОКІА АОХ - высвечивается краткосрочное при запуске;

ARM PWR OFF - питание приводов манипулятора отключено;

MANUAL MODE - разрешено управления роботом из пульта управления;

СОМР МОDЕ - манипулятор руководствуется от ЭВМ;

LІМІТ SТОР - сустав перемещен к крайнему положению;

ТОО CLOSE - заданная точка находится весьма близко к манипулятору;

ТОО FAR - заданная точка находится вне рабочей зоны робота;

ТЕАСН МООЕ - активизирован режим ТЕАСН, манипулятор перемещается за произвольными траекториями;

SТЕАСН МОDЕ - активизирован режим ТЕАСН-S, манипулятор перемещается за прямолинейными траекториями;

ERROR - на пульте ручного управления одновременно нажаты кнопки, которые образовывают недопустимую операцию и т.п..

Кроме того, индикатор выбранной скорости при таком кодировании:

1 засвеченный элемент - скорость инструмента? 1.9 мм/с;

2 засвеченный элемент - скорость инструмента? 3.8 мм/с;

3 засвеченный элемент - скорость инструмента? 7.5 мм/с;

4 засвеченный элемент - скорость инструмента? 15.0 мм/с;

5 засвеченный элемент - скорость инструмента? 30 мм/с;

6 засвеченный элемент - скорость инструмента? 60 мм/с;

7 засвеченный элемент - скорость инструмента? 120 мм/с;

8 засвеченный элемент - скорость инструмента? 240 мм/с.

Ниже представлен пример программы управления ПР РМ-01 для сверления отверстий под поверхностный монтаж ЭРЭ:

G04 File: SVETOR~1.BOT, Thu Dec 01 21:35:19 2006*

G04 Source: P-CAD 2000 PCB, Version 15.10.17, (C:\DOCUME~1\Овчарик\РАБОЧИ~1\SVETOR~1.PCB)*

G04 Format: Gerber Format (RS-274-D), ASCII*

G04 Format Options: Absolute Positioning*

G04 Leading-Zero Suppression*

G04 Scale Factor 1:1*

G04 NO Circular Interpolation*

G04 Millimeter Units*

G04 Numeric Format: 4.4 (XXXX.XXXX)*

G04 G54 NOT Used for Aperture Change*

G04 File Options: Offset = (0.000mm,0.000mm)*

G04 Drill Symbol Size = 2.032mm*

G04 Pad/Via Holes*

G04 File Contents: Pads*

G04 No Designators*

G04 No Drill Symbols*

G04 Aperture Descriptions*

G04 D010 EL X0.254mm Y0.254mm H0.000mm 0.0deg (0.000mm,0.000mm) DR*

G04 "Ellipse X10.0mil Y10.0mil H0.0mil 0.0deg (0.0mil,0.0mil) Draw"*

G04 D011 EL X0.050mm Y0.050mm H0.000mm 0.0deg (0.000mm,0.000mm) DR*

G04 "Ellipse X2.0mil Y2.0mil H0.0mil 0.0deg (0.0mil,0.0mil) Draw"*

G04 D012 EL X0.100mm Y0.100mm H0.000mm 0.0deg (0.000mm,0.000mm) DR*

G04 "Ellipse X3.9mil Y3.9mil H0.0mil 0.0deg (0.0mil,0.0mil) Draw"*

G04 D013 EL X1.524mm Y1.524mm H0.000mm 0.0deg (0.000mm,0.000mm) FL*

G04 "Ellipse X60.0mil Y60.0mil H0.0mil 0.0deg (0.0mil,0.0mil) Flash"*

G04 D014 EL X1.905mm Y1.905mm H0.000mm 0.0deg (0.000mm,0.000mm) FL*

G04 "Ellipse X75.0mil Y75.0mil H0.0mil 0.0deg (0.0mil,0.0mil) Flash"*

G04 D015 SQ X1.524mm Y1.524mm H0.000mm 0.0deg (0.000mm,0.000mm) FL*

G04 "Rectangle X60.0mil Y60.0mil H0.0mil 0.0deg (0.0mil,0.0mil) Flash"*

G04 D016 SQ X1.905mm Y1.905mm H0.000mm 0.0deg (0.000mm,0.000mm) FL*

G04 "Rectangle X75.0mil Y75.0mil H0.0mil 0.0deg (0.0mil,0.0mil) Flash"*

Выполнив сверление отверстий в ПП, робот выполняет установку ЭРЭ. После установки ЭРЭ, плату отправляют на пайку волной припоя.

2 МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Моделирование - это метод исследования сложных систем, основанный на том, что рассматриваемая система заменяется на модель и проводится исследование модели с целью получения информации об изучаемой системе. Под моделью исследуемой системы понимается некоторая другая система, которая ведет себя с точки зрения целей исследования аналогично поведению системы. Обычно модель проще и доступнее для исследования, чем система, что позволяет упростить ее изучение. Среди различных видов моделирования, применяемых для изучения сложных систем, большая роль отводится имитационному моделированию.

Имитационное моделирование является мощным инженерным методом исследования сложных систем, используемых в тех случаях, когда другие методы оказываются малоэффективными. Имитационная модель представляет собой систему, отображающую структуру и функционирование исходного объекта в виде алгоритма, связывающего входные и выходные переменные, принятые в качестве характеристик исследуемого объекта. Имитационные модели реализуются программно с использованием различных языков. Одним из наиболее распространенных языков, специально предназначаемых для построения имитационных моделей, является GPSS.

Система GPSS (General Purpose System Simulator) предназначена для написания имитационных моделей систем с дискретными событиями. Наиболее удобно в системе GPSS описываются модели систем массового обслуживания, для которых характерны относительно простые правила функционирования составляющих их элементов.

В системе GPSS моделируемая система представляется с помощью набора абстрактных элементов, называемых объектами. Каждый объект принадлежит к одному из типов объектов.

Объект каждого типа характеризуется определенным способом поведения и набором атрибутов, определяемыми типом объекта. Например, если рассмотреть работу порта, выполняющего погрузку и разгрузку прибывающих судов, и работу кассира в кинотеатре, выдающего билеты посетителям, то можно заметить большое сходство в их функционировании. В обоих случаях имеются объекты, постоянно присутствующие в системе (порт и кассир), которые обрабатывают поступающие в систему объекты (корабли и посетители кинотеатра). В теории массового обслуживания эти объекты называются приборами и заявками. Когда обработка поступившего объекта заканчивается, он покидает систему. Если в момент поступления заявки прибор обслуживания занят, то заявка становится в очередь, где и ждет до тех пор, пока прибор не освободится. Очередь также можно представлять себе как объект, функционирование которого состоит в хранении других объектов.

Каждый объект может характеризоваться рядом атрибутов, отражающих его свойства. Например, прибор обслуживания имеет некоторую производительность, выражаемую числом заявок, обрабатываемых им в единицу времени. Сама заявка может иметь атрибуты, учитывающие время ее пребывания в системе, время ожидания в очереди и т.д. Характерным атрибутом очереди является ее текущая длина, наблюдая за которой в ходе работы системы (или ее имитационной модели), можно определить ее среднюю длину за время работы (или моделирования). В языке GPSS определены классы объектов, с помощью которых можно задавать приборы обслуживания, потоки заявок, очереди и т.д., а также задавать для них конкретные значения атрибутов.

Динамические объекты, называемые в GPSS транзактами, служат для задания заявок на обслуживание. Транзакты могут порождаться во время моделирования и уничтожаться (покидать систему). Порождение и уничтожение транзактов выполняется специальными объектами (блоками) GENERATE и TERMINATE.

Сообщения (транзакты) - это динамические объекты GPSS/PC. Они создаются в определенных точках модели, продвигаются интерпретатором через блоки, а затем уничтожаются. Сообщения являются аналогами единиц потоков в реальной системе. Сообщения могут представлять собой различные элементы даже в одной системе.

Сообщения движутся от блока к блоку так, как движутся элементы, которые они представляют (программы в примере с ЭВМ).

Каждое продвижение считается событием, которое должно происходить в конкретный момент времени. Интерпретатор GPSS/PC автоматически определяет моменты наступления событий. В тех случаях, когда событие не может произойти, хотя момент его наступления подошел (например, при попытке занять устройство, когда оно уже занято), сообщение прекращает продвижение до снятия блокирующего условия.

После того, как система описана, исходя из операций, которые она выполняет, ее нужно описать на языке GPSS/PC, используя блоки, которые выполняют соответствующие операции в модели.

Пользователь может определить специальные точки в модели, в которых нужно собирать статистику об очередях. Тогда интерпретатор GPSS/PC автоматически будет собирать статистику об очередях (длину очереди, среднее время пребывания в очереди и т.д.). Число задержанных сообщений и продолжительность этих задержек определяется только в этих заданных точках. Интерпретатор также автоматически подсчитывает в этих точках общее число сообщений, поступающих в очередь. Это делается примерно также, как для устройств и памятей. В определенных счетчиках подсчитывается число сообщений, задерживающихся в каждой очереди, так как может представлять интерес число сообщений, прошедших какую-либо точку модели без задержки. Интерпретатор подсчитывает среднее время пребывания сообщения в очереди (для каждой очереди), а также максимальное число сообщений в очереди.

2.1 Разработка структурной схемы и алгоритма моделирования

Для моделирования систем массового обслуживания используется общецелевая система моделирования - GPSS. Это необходимо из-за того, что в практике исследования и проектирования сложных систем нередко встречаются системы, которые нуждаются в обработке большого потока заявок, проходящих через обслуживающие приборы.

Модели на GPSS состоят из малого числа операторов, в силу чего становятся компактными и соответственно широко распространёнными. Это объясняется тем, что в GPSS встроено максимально возможное число логических программ, необходимых для моделирующих систем. В него также входят специальные средства для описания динамического поведения систем, меняющихся во времени, причем изменение состояний происходит в дискретные моменты времени. GPSS очень удобен при программировании, поскольку интерпретатор GPSS многие функции выполняет автоматически.. В язык включены и многие другие полезные элементы. Например, GPSS обслуживает таймер модельного времени, планирует события, которые должны произойти позднее в течение времени моделирования, вызывает их своевременное появление и управляет очередностью поступления.

Для разработки структурной схемы проведем анализ технологического процесса сборки разрабатываемого модуля.

Для данного технологического процесса характерно последовательное выполнение технологических операций. Поэтому структурная схема будет иметь вид цепочки последовательно соединенных блоков, каждый из которых соответствует своей технологической операции и каждая из которых длится определенное время. Связующими звеньями данных блоков являются очереди, образуемые в результате выполнения каждой технологической операции, и объясняются различным временем выполнения каждой из них. Данная структурная схема составлена на основе схемы проектирования техпроцесса сборки проектируемого модуля (рис. 1.2) и представлена на рисунке 2.1.

Рисунок 2.1 - Структурная схема технологического процесса

В соответствии с данной схемой составим алгоритм модели.

Данный алгоритм содержит следующие блоки:

Создает транзакты через определенное интервалы времени;

Занятие очереди транзактой;

Освобождение очереди;

Занятие прибора;

Освобождение прибора;

Задержка обработки транзакты.

Все блоки записываются с первой позиции строки, сначала идет имя блока, а затем, через запятую, параметры. В записи параметров не должно быть пробелов. Если какой-то параметр в блоке отсутствует (задается по умолчанию), то соответствующая ему запятая остается (если это не последний параметр). Если в первой позиции строки стоит символ *,то эта строка с комментарием.

Опишем параметры некоторых блоков:

а). GENERATE A,B,C,D,E,F

Создает транзакты через определенные интервалы времени.

A - средний интервал времени между появлениями транзактов.

B - 1) если число, то это половина поля, в котором равномерно распределено значение интервала между появлениями транзактов ;

2) если функция, то для определения интервала значение A умножается на значение функции.

C - момент времени появления первого транзакта.

D - предельное количество транзактов.

E - величина приоритета транзакта.

F - число параметров у транзакта и их тип (PB-байтовый целый, PH-полусловный целый, PF-полнословный целый, PL-с плавающей запятой).

б). TERMINATE A

Уничтожает транзакты из модели и уменьшает значение счетчика завершения на A единиц. Работа модели завершится, если счетчик завершения станет меньше или равен нулю. Если параметр A отсутствует, то блок просто уничтожает транзакты.

Если прибор с именем A свободен, то транзакт занимает его (переводит в состояние "занято"), если нет, то ставится в очередь к нему. Именем прибора может быть числовой номер или последовательность от 3 до 5 символов.

Транзакт освобождает прибор с именем A, т.е. переводит его в состояние "свободно".

д). ADVANCE A,B

Задерживает обработку транзакта данным процессом и планирует время начала следующего этапа обработки.

A - среднее время задержки.

B - имеет тот же смысл, что и для GENERATE.

Собирает статистику о входе транзакта в очередь с именем A.

Собирает статистику о выходе транзакта из очереди с именем A.

2 .2 Разработка программы для моделирования технологического процесса с помощью языка GPSS.

Теперь задача моделирования состоит в создании машинной модели на ЭВМ, которая позволит изучить поведение системы в течение времени моделирования. Иначе говоря, нужно реализовать построенную блок-схему на ЭВМ, используя блоки и операторы языка GPSS.

Так как работа модели связана с последовательным возникновением событий, то вполне естественно использовать понятие "Таймер Модельного Времени" в качестве одного из элементов модели системы. Для этого вводят специальную переменную и используют ее для фиксации текущего времени работы модели.

Когда начинается моделирование, таймер модельного времени обычно устанавливают на нулевое значение. Разработчик сам решает вопрос о том, какое значение реального времени принять за точку отсчета. Например, началу отсчета может соответствовать 8 ч. утра первого моделируемого дня. Разработчик также должен решить вопрос о выборе величины единицы времени. Единицей времени может быть 1 с, 5 с, 1 мин, 20 мин или 1 ч. Когда единица времени выбрана, все значения времени, получаемые при моделировании или входящие в модель, должны быть выражены через эту единицу. На практике значения модельного времени должны быть достаточно малыми по сравнению с реальными промежутками времени, протекающими в моделируемой системе. В данной системе обычно выбирают единицу времени, равную 1 мин.

Если при моделировании некоторой системы при текущем значении модельного времени ее состояние изменилось, то нужно увеличить значение таймера. Чтобы определить, на какую величину должно быть увеличено значение таймера, используют один из двух методов:

1.Концепция фиксированного приращения значений таймера.

При таком подходе увеличивают значение таймера ровно на одну единицу времени.

Затем нужно проверить состояния системы и определить те из запланированных событий, которые должны произойти при новом значении таймера. Если таковые имеются, то необходимо выполнить операции, реализующие соответствующие события, снова изменить значение таймера на одну единицу времени и т.д. Если проверка покажет, что для нового значения таймера не запланировано ни одного события, то произойдет передвижение таймера непосредственно к следующему значению.

2.Концепция переменного приращения значений таймера.

В этом случае условием, вызывающем приращение таймера, является наступление времени "близкого события". Близкое событие - это то событие, возникновение которого запланировано на момент времени, равный следующему ближайшему значению таймера модельного времени. Колебания приращения таймера от случая к случаю объясняют выражение " переменное приращение времени".

Обычно после какого-то момента времени наступает необходимость прекратить моделирование. Например, нужно предотвратить приход новых заявок в систему, но обслуживание надо продолжать до освобождения системы. Одним из способов является введение в модель основного псевдособытия, называемого "завершением моделирования". Тогда одной из функций модели будет планирование этого события. Момент времени, наступление которого должно вызвать остановку моделирования, задается обычно в виде числа. Т.е., в процессе моделирования нужно проверять, является ли событие "завершение моделирования" следующим событием. Если "да", то в таймере устанавливается значение времени конца моделирования, а управление передается процедуре, которая отрабатывает завершение моделирования.

Исходными данными для разработки программы являются интервалы времени, через которые ЭРЭ поступают на первый блок, время обработки на каждом блоке и время моделирования, в течении которого необходимо изучить поведение системы. Разработанная программа представлена ниже.

generate 693,34.65

advance 99.6,4.98

advance 450,22.5

advance 248.4,12.42

advance 225,11.25

advance 248.4,12.42

advance 49.8,2.49

Результат выполнения программы представлен в приложении А.

Из полученных результатов видим, что за одну рабочую смену будет изготовлено 6 изделий. При этом ни на одном из участков не создается очередь, но в то же время на пяти участках не завершился технологический процесс изготовления прибора. Полученные величины коэффициента загрузки оборудования и времени обработки на каждом участке при моделировании с небольшими отклонениями соответствуют рассчитанным в технологической части данного дипломного проекта.

Подводя итоги, делаем вывод, что технологический процесс разработан правильно.

ВЫВОДЫ

В ходе выполнения дипломного проекта была разработана конструкция усилителя низкой частоты. При этом учитывались все требования технического задания и соответствующих нормативных документов.

В первом разделе дипломного проекта были проанализированы исходные данные, выбран тип производства, стадию разработки технологичной документации, вид технологического процесса по организации производства.

Выбрали типовой технологический процесс, на основании которого сформировали ТП сборки ПП.

Во втором разделе КП была рассчитана и построена схема модели «жесткий вывод - отверстие печатной платы». Разработано захватное устройство.

В третьем разделе была разработана структурная схема и алгоритм моделирования, на основании которых с помощью языка GPSS смоделировали технологический процесс изготовления устройства.

ПЕРЕЧЕНЬ ССЫЛОК

1 ГОСТ 3.1102-81 ”Стадии разработки и виды документов”.

2 ГОСТ 3.1109-82 ”Термины и определения основных понятий”.

3 Технология и автоматизация производства РЭА: Учебник для вузов/Под ред. А.П.Достанко.-М.:Радио и связь, 2009.

4 Технология производства ЭВМ - Достанко А.П. и др.:Учеб.-Мн.:Высшая школа, 2004.

5 Технологічне оснащення виробництва електронних обчислювальних засобів: Навч. Посібник/М.С.Макурін.-Харків: ХТУРЕ,1996.

Подобные документы

    Эффективность применения средств комплексной автоматизации производственных процессов. Принципы построения робототехнических систем. Степени подвижности манипулятора робота. Критерии компактности и классификационные признаки промышленных роботов.

    дипломная работа , добавлен 28.09.2015

    Автоматизация глюкозно-паточного технологического процесса; технические средства: аппаратные платформы, инженерное программное обеспечение Siemens SCOUT. Интегрированная система управления комбинатом, выбор критериев качества; промышленная экология.

    дипломная работа , добавлен 22.06.2012

    Автоматизация технологического процесса разваривания на спиртзаводе. Современная платформа автоматизации TSX Momentum. Программное обеспечение логического контроллера. Спецификация приборов, используемых в технологическом процессе пищевого производства.

    дипломная работа , добавлен 19.03.2014

    Автоматизация технологических процессов на газоперерабатывающем заводе. Требования к создаваемой АСУТП. Управления процессом регенерации аминового сорбента. Структурная схема контура автоматического регулирования; контроллеры, модульные базовые платы.

    дипломная работа , добавлен 31.12.2015

    Автоматизация управления газоперекачивающим агрегатом компрессорной станции Сургутского месторождения. Характеристика технологического процесса. Выбор конфигурации контроллера и программного обеспечения. Разработка алгоритмов работы объекта автоматизации.

    дипломная работа , добавлен 29.09.2013

    Алгоритм работы схемы микропроцессорного устройства и протокол обмена информацией между ним и объектом управления. Составление карты памяти для микропроцессора. Разработка программы на языке Ассемблера для выбранного микропроцессора и микроконтроллера.

    контрольная работа , добавлен 29.06.2015

    Автоматизация технологического процесса системы телоснабжения. Анализ методов и средств контроля, регулирования и сигнализации технологических параметров. Выбор и обоснование технических средств, микропроцессорного контролера. Оценка устойчивости системы.

    дипломная работа , добавлен 31.12.2015

    Основные характеристики технологического объекта управления. Выбор средств автоматизации для подсистемы вывода командной информации. Моделирование системы автоматического регулирования в динамическом режиме. Выбор параметров настройки контроллера.

    курсовая работа , добавлен 08.03.2014

    Характеристика, структура, особенности и технологическое устройство роботизированных комплексов (РТК) сборки. Основные сборочные операции промышленных роботов (ПР). Размеры рабочей зоны и система управления ПР. Типовые варианты компоновок сборочных РТК.

    реферат , добавлен 04.06.2010

    Описание технологического процесса групповой загрузки жестяной консервной банки в картонные коробки. Анализ методов и средств автоматизации процесса сборки и упаковки. Оборудование, компоновка технологического комплекса, разработка системы управления.


Автоматизация и моделирование технологического процесса

1 АВТОМАТИЗАЦИЯ ПРОЦЕССА

Автоматизация – направление развития производства, характеризуемое освобождением человека не только от мускульных усилий для выполнения тех или иных движений, но и от оперативного управления механизмами, выполняющими эти движения. Автоматизация может быть частичной и комплексной.

Комплексная автоматизация характеризуется автоматическим выполнением всех функций для осуществления производственного процесса без непосредственного вмешательства человека в работу оборудования. В обязанности человека входит настройка машины или группы машин, включение и контроль. Автоматизация – это высшая форма механизации, но вместе с этим это новая форма производства, а не простая замена ручного труда механическим.

С развитием автоматизации все более широкое применение находят промышленные роботы (ПР), заменяя человека (или помогая ему) на участках с опасными, вредными для здоровья, тяжелыми или монотонными условиям труда.

Промышленный робот – перепрограммируемый автоматический манипулятор промышленного применения. Характерными признаками ПР являются автоматическое управление; способность к быстрому и относительно легкому перепрограммированию, способность к выполнению трудовых действий.

Особенно важно то, что ПР можно применять для выполнения работ, которые не могут быть механизированы или автоматизированы традиционными средствами. Однако ПР – всего лишь одно из многих возможных средств автоматизации и упрощения производственных процессов. Они создают предпосылки для перехода к качественно новому уровню автоматизации – созданию автоматических производственных систем, работающих с минимальным участием человека.

Одно из основных преимуществ ПР – возможность быстрой переналадки для выполнения задач, различающихся последовательностью и характером манипуляционных действий. Поэтому применение ПР наиболее эффективно в условиях частой смены объектов производства, а также для автоматизации ручного низкоквалифицированного труда. Не менее важным является и обеспечение быстрой переналадки автоматических линий, а также комплектация и пуск их в сжатые сроки.

Промышленные роботы дают возможность автоматизировать не только основные, но и вспомогательные операции, чем и объясняется постоянно растущий интерес к ним.

Основные предпосылки расширения применения ПР следующие:

повышение качества продукции и объемов ее выпуска при неизменном числе работающих благодаря снижению времени выполнения операций и обеспечению постоянного режима «без усталости», росту коэффициента сменности работы оборудования, интенсификации существующих и стимулированию создания новых высокоскоростных процессов и оборудования;

изменение условий труда работающих путем освобождения от неквалифицированного, монотонного, тяжелого и вредного труда, улучшения условий безопасности, снижения потерь рабочего времени от производственного травматизма и профессионально-технических заболеваний;

экономия рабочей силы и высвобождение трудящихся для решения народнохозяйственных задач.

1.1 Построение и расчет схемы модели «жесткий вывод – отверстие печатной платы»

Существенным фактором в реализации сборочного процесса является обеспечение собираемости электронного модуля. Собираемость зависит в большинстве случаев от точности позиционирования и усилий, необходимых для сборки элементов конструкции модуля, конструктивно-технологических параметров сопрягаемых поверхностей.

В варианте, когда в отверстие платы вводится жесткий вывод, можно выделить следующие характерные виды контакта сопрягаемых элементов:

бесконтактный проход вывода через отверстие;

контакт нулевого вида, когда конец вывода касается образующей фаски отверстия;

контакт первого вида, когда конец вывода касается боковой поверхности отверстия;

контакт второго вида, когда боковая поверхность вывода касается кромки фаски отверстия;

контакт третьего вида, когда конец вывода касается боковой поверхности отверстия, а поверхность вывода – кромки фаски отверстия.

В качестве классификационных признаков выделения видов контактов приняты: изменение нормальной реакции в точке контакта; сила трения; форма упругой линии стержня.

На надежную работу установочной головки значительное влияние оказывают допуски отдельных элементов. В процессах позиционирования и перемещения возникает цепочка допусков, которая в неблагоприятных случаях может привести к ошибке при установке ЭРЭ, приводя к некачественной сборке.

Собираемость изделия зависит, таким образом, от трех факторов:

размерных и точностных параметров сопрягаемых поверхностей компонентов изделия;

размерных и точностных параметров сопрягаемых поверхностей базового элемента изделия;

размерных и точтностных параметров позиционирования исполнительного органа с расположенным в нем компонентом.

Рассмотрим случай контакта нулевого вида, схема которого изображена на рисунке 1.1.



M г

R г

N

R F l

Q


Рисунок 1.1 – Расчетная схема контакта нулевого вида.

Исходные данные:

Похожие работы:

  • Автоматизация технологического процесса

    Курсовая работа >> Промышленность, производство

    По экономике процессов . процессов включает в себя два этапа: 1) процесса ; 2) экономическое обоснование. Для внедрения...

  • Технологический процесс создания детали "Плашка"

    Отчет по практике >> Промышленность, производство

    Механизации и операций процессов не применяются. 2.4 Средства оснащения, применяемые в процессе изготовления деталей... развития на будущее время; – или экономико-математические методы, ...

  • Автоматизация сквозных бизнес-процессов предприятий с использованием BPEL

    Статья >> Информатика, программирование

    Целая индустрия BPM – Business Process Modeling. ... В то время как предпосылки определили конкретное историческое... поскольку такие возможности как партнёрских отношений, реализация композитных...